enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Memorylessness - Wikipedia

    en.wikipedia.org/wiki/Memorylessness

    The only continuous random variable that is memoryless is the exponential random variable. It models random processes like time between consecutive events. [8] The memorylessness property asserts that the amount of time since the previous event has no effect on the future time until the next event occurs.

  3. Markov property - Wikipedia

    en.wikipedia.org/wiki/Markov_property

    The term strong Markov property is similar to the Markov property, except that the meaning of "present" is defined in terms of a random variable known as a stopping time. The term Markov assumption is used to describe a model where the Markov property is assumed to hold, such as a hidden Markov model .

  4. Exponential distribution - Wikipedia

    en.wikipedia.org/wiki/Exponential_distribution

    In probability theory and statistics, the exponential distribution or negative exponential distribution is the probability distribution of the distance between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate; the distance parameter could be any meaningful mono-dimensional measure of the process, such as time ...

  5. Quantum channel - Wikipedia

    en.wikipedia.org/wiki/Quantum_channel

    We will assume for the moment that all state spaces of the systems considered, classical or quantum, are finite-dimensional. The memoryless in the section title carries the same meaning as in classical information theory: the output of a channel at a given time depends only upon the corresponding input and not any previous ones.

  6. Markovian arrival process - Wikipedia

    en.wikipedia.org/wiki/Markovian_arrival_process

    In queueing theory, a discipline within the mathematical theory of probability, a Markovian arrival process (MAP or MArP [1]) is a mathematical model for the time between job arrivals to a system. The simplest such process is a Poisson process where the time between each arrival is exponentially distributed. [2] [3]

  7. Markov chain - Wikipedia

    en.wikipedia.org/wiki/Markov_chain

    Another discrete-time process that may be derived from a continuous-time Markov chain is a δ-skeleton—the (discrete-time) Markov chain formed by observing X(t) at intervals of δ units of time. The random variables X (0), X (δ), X (2δ), ... give the sequence of states visited by the δ-skeleton.

  8. Kendall's notation - Wikipedia

    en.wikipedia.org/wiki/Kendall's_notation

    A M/M/1 queue means that the time between arrivals is Markovian (M), i.e. the inter-arrival time follows an exponential distribution of parameter λ. The second M means that the service time is Markovian: it follows an exponential distribution of parameter μ. The last parameter is the number of service channel which one (1).

  9. Residual time - Wikipedia

    en.wikipedia.org/wiki/Residual_time

    This is a known characteristic of the exponential distribution, i.e., its memoryless property. Intuitively, this means that it does not matter how long it has been since the last renewal epoch, the remaining time is still probabilistically the same as in the beginning of the holding time interval.

  1. Related searches why is the memoryless property called the right key of time is based on location

    memorylessness property wikipediawhat is memorylessness