enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mandelbrot set - Wikipedia

    en.wikipedia.org/wiki/Mandelbrot_set

    A mosaic made by matching Julia sets to their values of c on the complex plane. The Mandelbrot set is a map of connected Julia sets. As a consequence of the definition of the Mandelbrot set, there is a close correspondence between the geometry of the Mandelbrot set at a given point and the structure of the corresponding Julia set. For instance ...

  3. Plotting algorithms for the Mandelbrot set - Wikipedia

    en.wikipedia.org/wiki/Plotting_algorithms_for...

    Every pixel that contains a point of the Mandelbrot set is colored black. Every pixel that is colored black is close to the Mandelbrot set. Exterior distance estimate may be used to color whole complement of Mandelbrot set. The upper bound b for the distance estimate of a pixel c (a complex number) from the Mandelbrot set is given by [6] [7] [8]

  4. Misiurewicz point - Wikipedia

    en.wikipedia.org/wiki/Misiurewicz_point

    A preperiodic orbit. In mathematics, a Misiurewicz point is a parameter value in the Mandelbrot set (the parameter space of complex quadratic maps) and also in real quadratic maps of the interval [1] for which the critical point is strictly pre-periodic (i.e., it becomes periodic after finitely many iterations but is not periodic itself).

  5. File:Julia Mandelbrot relationship map 300 (90,000 sets).png

    en.wikipedia.org/wiki/File:Julia_Mandelbrot...

    English: Collection of Julia sets laid out in a grid such that the centre of each image corresponds to the same position in the complex plane as the value of the set. When laid out like this the overall image resembles the Mandelbrot set. Here there are 300 sets in each direction for a total of 90,000 mini Julia sets. The dimensions are:

  6. Connectedness locus - Wikipedia

    en.wikipedia.org/wiki/Connectedness_locus

    Without doubt, the most famous connectedness locus is the Mandelbrot set, which arises from the family of complex quadratic polynomials : = + The connectedness loci of the higher-degree unicritical families, +

  7. Douady rabbit - Wikipedia

    en.wikipedia.org/wiki/Douady_rabbit

    A Douady rabbit is a fractal derived from the Julia set of the function () = +, when parameter is near the center of one of the period three bulbs of the Mandelbrot set for a complex quadratic map. It is named after French mathematician Adrien Douady. An example of a Douady rabbit.

  8. File:Mandelbrot Components.svg - Wikipedia

    en.wikipedia.org/wiki/File:Mandelbrot_Components.svg

    The Douady-Hubbard-Sullivan theorem (DHS) states that the multiplier map of an attracting periodic orbit is a conformal isomorphism from a hyperbolic component of the Mandelbrot set onto the unit disk and it extends homeomorpically to the boundaries. [2]

  9. Burning Ship fractal - Wikipedia

    en.wikipedia.org/wiki/Burning_Ship_fractal

    The difference between this calculation and that for the Mandelbrot set is that the real and imaginary components are set to their respective absolute values before squaring at each iteration. [1] The mapping is non-analytic because its real and imaginary parts do not obey the Cauchy–Riemann equations .