Search results
Results from the WOW.Com Content Network
Range ambiguity resolution is a technique used with medium pulse-repetition frequency (PRF) radar to obtain range information for distances that exceed the distance between transmit pulses. This signal processing technique is required with pulse-Doppler radar .
Both pre and post Doppler methods can be used in the beamspace. Post Doppler methods may also be used on the full antenna element input as well to reduce the data in this dimension only. A popular example is displaced phase center antenna (DPCA), which is a form of data-independent STAP in the beamspace, pre-Doppler. [7]
In pulsed radar and sonar signal processing, an ambiguity function is a two-dimensional function of propagation delay and Doppler frequency, (,).It represents the distortion of a returned pulse due to the receiver matched filter [1] (commonly, but not exclusively, used in pulse compression radar) of the return from a moving target.
Pulse-Doppler signal processing is a radar and CEUS performance enhancement strategy that allows small high-speed objects to be detected in close proximity to large slow moving objects. Detection improvements on the order of 1,000,000:1 are common.
Calculations for the "slant range" (range between the antenna's phase center and the point on the ground) are done for every azimuth time using coordinate transformations. Azimuth Compression is done after the previous step. Step 5 and 6 are repeated for every pixel, to cover every pixel, and conduct the procedure on every sub-aperture.
Inverse synthetic-aperture radar (ISAR) is a radar technique using radar imaging to generate a two-dimensional high resolution image of a target. It is analogous to conventional SAR, except that ISAR technology uses the movement of the target rather than the emitter to create the synthetic aperture. [1]
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Delay Doppler coordinates are coordinates typically used in a radar technology-inspired approach to measurement. [1] [2] When used in wireless communication, the Delay Doppler domain mirrors the geometry of the reflectors comprising the wireless channel, which changes far more slowly than the phase changes experienced in the rapidly varying time-frequency domain.