Search results
Results from the WOW.Com Content Network
An embedding, or a smooth embedding, is defined to be an immersion that is an embedding in the topological sense mentioned above (i.e. homeomorphism onto its image). [ 4 ] In other words, the domain of an embedding is diffeomorphic to its image, and in particular the image of an embedding must be a submanifold .
In natural language processing, a word embedding is a representation of a word. The embedding is used in text analysis.Typically, the representation is a real-valued vector that encodes the meaning of the word in such a way that the words that are closer in the vector space are expected to be similar in meaning. [1]
Then given a query in natural language, the embedding for the query can be generated. A top k similarity search algorithm is then used between the query embedding and the document chunk embeddings to retrieve the most relevant document chunks as context information for question answering tasks.
An embedded graph uniquely defines cyclic orders of edges incident to the same vertex. The set of all these cyclic orders is called a rotation system.Embeddings with the same rotation system are considered to be equivalent and the corresponding equivalence class of embeddings is called combinatorial embedding (as opposed to the term topological embedding, which refers to the previous ...
300-long word embedding vector. The vectors are usually pre-calculated from other projects such as GloVe or Word2Vec. h 500-long encoder hidden vector. At each point in time, this vector summarizes all the preceding words before it. The final h can be viewed as a "sentence" vector, or a thought vector as Hinton calls it. s
The word with embeddings most similar to the topic vector might be assigned as the topic's title, whereas far away word embeddings may be considered unrelated. As opposed to other topic models such as LDA, top2vec provides canonical ‘distance’ metrics between two topics, or between a topic and another embeddings (word, document, or ...
The embedding of a knowledge graph translates each entity and relation of a knowledge graph, into a vector of a given dimension , called embedding dimension. [7] In the general case, we can have different embedding dimensions for the entities d {\displaystyle d} and the relations k {\displaystyle k} . [ 7 ]
A latent space, also known as a latent feature space or embedding space, is an embedding of a set of items within a manifold in which items resembling each other are positioned closer to one another. Position within the latent space can be viewed as being defined by a set of latent variables that emerge from the resemblances from the objects.