Search results
Results from the WOW.Com Content Network
The current entering any junction is equal to the current leaving that junction. i 2 + i 3 = i 1 + i 4. This law, also called Kirchhoff's first law, or Kirchhoff's junction rule, states that, for any node (junction) in an electrical circuit, the sum of currents flowing into that node is equal to the sum of currents flowing out of that node; or equivalently:
Kirchhoff's current law is the basis of nodal analysis. In electric circuits analysis, nodal analysis, node-voltage analysis, or the branch current method is a method of determining the voltage (potential difference) between "nodes" (points where elements or branches connect) in an electrical circuit in terms of the branch currents.
The Tellegen theorem is applicable to a multitude of network systems. The basic assumptions for the systems are the conservation of flow of extensive quantities (Kirchhoff's current law, KCL) and the uniqueness of the potentials at the network nodes (Kirchhoff's voltage law, KVL).
A theorem in calculus, useful in analytic solutions of problems in electromagnetism. Kilovolt-ampere A unit of apparent power. Kirchhoff's circuit laws The observation that the sum of the currents at any node of a circuit must be zero, and the sum of the voltage differences around any loop must be zero; often abbreviated "KCL" and "KVL" in ...
In electrical engineering, electrical terms are associated into pairs called duals.A dual of a relationship is formed by interchanging voltage and current in an expression.
The solution principles outlined here also apply to phasor analysis of AC circuits. Two circuits are said to be equivalent with respect to a pair of terminals if the voltage across the terminals and current through the terminals for one network have the same relationship as the voltage and current at the terminals of the other network.
For problems more general than those including current and voltage sources, the voltage drops will be the impedance of the electronic component multiplied by the mesh current in that loop. [ 4 ] If a voltage source is present within the mesh loop, the voltage at the source is either added or subtracted depending on if it is a voltage drop or a ...
I tend to think of KCL and KVL prescriptive rules for drawing a useful schematic rather than a theoretical result. By useful, I mean that the schematic can be solved and that the solutions are useful approximations of reality. Real physical nodes have self-capacitance and coupling capacitance to other nodes.