Search results
Results from the WOW.Com Content Network
Circuit diagram A circuit diagram ... Low temperature shift (LTS), the water gas shift reaction at 190–210 °C ... LTS: low temperature shift: MAF: mass flow sensor ...
The water–gas shift reaction (WGSR) describes the reaction of carbon monoxide and water vapor to form carbon dioxide and hydrogen: CO + H 2 O ⇌ CO 2 + H 2. The water gas shift reaction was discovered by Italian physicist Felice Fontana in 1780. It was not until much later that the industrial value of this reaction was realized.
The first step in the WGS reaction is the high temperature shift which is carried out at temperatures between 320 °C and 450 °C. As mentioned before, the catalyst is a composition of iron-oxide, Fe 2 O 3 (90-95%), and chromium oxides Cr 2 O 3 (5-10%) which have an ideal activity and selectivity at these temperatures.
The ideal temperature for a reaction under thermodynamic control is the lowest temperature at which equilibrium will be reached in a reasonable amount of time. [15] If needed, the selectivity can be increased by then slowly cooling the reaction mixture to shift the equilibrium further toward the most stable product.
Water shift reaction CO + H 2 O → CO 2 + H 2 Δ r H = -41 kJ mol −1 Synthesis 2 H 2 + CO → CH 3 OH Δ r H = -92 kJ mol −1. The methanol thus formed may be converted to gasoline by the Mobil process and methanol-to-olefins.
This is trivial in the case of thermolysis, as the fuel is consumed via an inverse reaction. Consequently, if there is only one temperature (the thermolysis one), maximum work recovery in a fuel cell is equal to the opposite of the Gibbs free energy of the water-splitting reaction at the same temperature, i.e. null by definition of the thermolysis.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In thermodynamics, a temperature–entropy (T–s) diagram is a thermodynamic diagram used to visualize changes to temperature (T ) and specific entropy (s) during a thermodynamic process or cycle as the graph of a curve. It is a useful and common tool, particularly because it helps to visualize the heat transfer during a process.