enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Norm (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Norm_(mathematics)

    A seminorm satisfies the first two properties of a norm, but may be zero for vectors other than the origin. [1] A vector space with a specified norm is called a normed vector space. In a similar manner, a vector space with a seminorm is called a seminormed vector space. The term pseudonorm has been used for several related meanings.

  3. Normed vector space - Wikipedia

    en.wikipedia.org/wiki/Normed_vector_space

    An isometry between two normed vector spaces is a linear map which preserves the norm (meaning ‖ ‖ = ‖ ‖ for all vectors ). Isometries are always continuous and injective . A surjective isometry between the normed vector spaces V {\displaystyle V} and W {\displaystyle W} is called an isometric isomorphism , and V {\displaystyle V} and W ...

  4. Orthonormality - Wikipedia

    en.wikipedia.org/wiki/Orthonormality

    But often, it is easier to deal with vectors of unit length. That is, it often simplifies things to only consider vectors whose norm equals 1. The notion of restricting orthogonal pairs of vectors to only those of unit length is important enough to be given a special name. Two vectors which are orthogonal and of length 1 are said to be orthonormal.

  5. Polarization identity - Wikipedia

    en.wikipedia.org/wiki/Polarization_identity

    In linear algebra, a branch of mathematics, the polarization identity is any one of a family of formulas that express the inner product of two vectors in terms of the norm of a normed vector space. If a norm arises from an inner product then the polarization identity can be used to express this inner product entirely in terms of the norm. The ...

  6. Matrix norm - Wikipedia

    en.wikipedia.org/wiki/Matrix_norm

    Suppose a vector norm ‖ ‖ on and a vector norm ‖ ‖ on are given. Any matrix A induces a linear operator from to with respect to the standard basis, and one defines the corresponding induced norm or operator norm or subordinate norm on the space of all matrices as follows: ‖ ‖, = {‖ ‖: ‖ ‖ =} = {‖ ‖ ‖ ‖:} . where denotes the supremum.

  7. Normal (geometry) - Wikipedia

    en.wikipedia.org/wiki/Normal_(geometry)

    A polygon and its two normal vectors A normal to a surface at a point is the same as a normal to the tangent plane to the surface at the same point.. In geometry, a normal is an object (e.g. a line, ray, or vector) that is perpendicular to a given object.

  8. Euclidean distance - Wikipedia

    en.wikipedia.org/wiki/Euclidean_distance

    By Dvoretzky's theorem, every finite-dimensional normed vector space has a high-dimensional subspace on which the norm is approximately Euclidean; the Euclidean norm is the only norm with this property. [24] It can be extended to infinite-dimensional vector spaces as the L 2 norm or L 2 distance. [25]

  9. Dual norm - Wikipedia

    en.wikipedia.org/wiki/Dual_norm

    The Frobenius norm defined by ‖ ‖ = = = | | = ⁡ = = {,} is self-dual, i.e., its dual norm is ‖ ‖ ′ = ‖ ‖.. The spectral norm, a special case of the induced norm when =, is defined by the maximum singular values of a matrix, that is, ‖ ‖ = (), has the nuclear norm as its dual norm, which is defined by ‖ ‖ ′ = (), for any matrix where () denote the singular values ...