enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fermat number - Wikipedia

    en.wikipedia.org/wiki/Fermat_number

    If 2 k + 1 is prime and k > 0, then k itself must be a power of 2, [1] so 2 k + 1 is a Fermat number; such primes are called Fermat primes. As of 2023 [update] , the only known Fermat primes are F 0 = 3 , F 1 = 5 , F 2 = 17 , F 3 = 257 , and F 4 = 65537 (sequence A019434 in the OEIS ).

  3. Fermat primality test - Wikipedia

    en.wikipedia.org/wiki/Fermat_primality_test

    The Fermat primality test is a probabilistic test to determine whether a number is a probable prime. Concept ... Either 221 is prime, or 38 is a Fermat liar, ...

  4. Pépin's test - Wikipedia

    en.wikipedia.org/wiki/Pépin's_test

    In mathematics, Pépin's test is a primality test, which can be used to determine whether a Fermat number is prime. It is a variant of Proth's test . The test is named after a French mathematician, Théophile Pépin .

  5. Fermat's little theorem - Wikipedia

    en.wikipedia.org/wiki/Fermat's_little_theorem

    In number theory, Fermat's little theorem states that if p is a prime number, then for any integer a, the number a p − a is an integer multiple of p. In the notation of modular arithmetic , this is expressed as a p ≡ a ( mod p ) . {\displaystyle a^{p}\equiv a{\pmod {p}}.}

  6. Mersenne prime - Wikipedia

    en.wikipedia.org/wiki/Mersenne_prime

    Proof: By Fermat's little theorem, q is a factor of 2 q−1 − 1. Since q is a factor of 2 p − 1, for all positive integers c, q is also a factor of 2 pc − 1. Since p is prime and q is not a factor of 2 1 − 1, p is also the smallest positive integer x such that q is a factor of 2 x − 1.

  7. Fermat's theorem on sums of two squares - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem_on_sums_of...

    Fermat's theorem on sums of two squares is strongly related with the theory of Gaussian primes.. A Gaussian integer is a complex number + such that a and b are integers. The norm (+) = + of a Gaussian integer is an integer equal to the square of the absolute value of the Gaussian integer.

  8. Fermat pseudoprime - Wikipedia

    en.wikipedia.org/wiki/Fermat_pseudoprime

    When p is a prime, p 2 is a Fermat pseudoprime to base b if and only if p is a Wieferich prime to base b. For example, 1093 2 = 1194649 is a Fermat pseudoprime to base 2, and 11 2 = 121 is a Fermat pseudoprime to base 3. The number of the values of b for n are (For n prime, the number of the values of b must be n − 1, since all b satisfy the ...

  9. Fermat's Last Theorem - Wikipedia

    en.wikipedia.org/wiki/Fermat's_Last_Theorem

    Thus, to prove that Fermat's equation has no solutions for n > 2, it would suffice to prove that it has no solutions for at least one prime factor of every n. Each integer n > 2 is divisible by 4 or by an odd prime number (or both). Therefore, Fermat's Last Theorem could be proved for all n if it could be proved for n = 4 and for all odd primes p.