Search results
Results from the WOW.Com Content Network
A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...
Here, the numbers may come as close as they like to 12, including 11.999 and so forth (with any finite number of 9s), but 12.0 is not included. In some European countries, the notation [ 5 , 12 [ {\displaystyle [5,12[} is also used for this, and wherever comma is used as decimal separator , semicolon might be used as a separator to avoid ...
The number the numeral represents is called its value. Not all number systems can represent the same set of numbers; for example, Roman numerals cannot represent the number zero. Ideally, a numeral system will: Represent a useful set of numbers (e.g. all integers, or rational numbers)
The number of elements in a particular set is a property known as cardinality; informally, this is the size of a set. [5] In the above examples, the cardinality of the set A is 4, while the cardinality of set B and set C are both 3.
The first ordinal number that is not a natural number is expressed as ω; this is also the ordinal number of the set of natural numbers itself. The least ordinal of cardinality ℵ 0 (that is, the initial ordinal of ℵ 0) is ω but many well-ordered sets with cardinal number ℵ 0 have an ordinal number greater than ω.
A metric space is a connected space if and only if, whenever the space is partitioned into two sets, one of the two sets contains a sequence converging to a point in the other set. A topological space is separable exactly when there is a dense sequence of points. Sequences can be generalized to nets or filters. These generalizations allow one ...
A Hasse diagram of the divisors of , ordered by the relation is divisor of, with the upper set colored green. The white sets form the lower set . In mathematics, an upper set (also called an upward closed set, an upset, or an isotone set in X) [1] of a partially ordered set (,) is a subset with the following property: if s is in S and if x in X is larger than s (that is, if <), then x is in S.
The definition can be extended to an arbitrary countable set A (e.g. the set of n-tuples of integers, the set of rational numbers, the set of formulas in some formal language, etc.) by using Gödel numbers to represent elements of the set and declaring a subset of A to be arithmetical if the set of corresponding Gödel numbers is arithmetical.