Search results
Results from the WOW.Com Content Network
Capillary action of water (polar) compared to mercury (non-polar), in each case with respect to a polar surface such as glass (≡Si–OH). Capillary action (sometimes called capillarity, capillary motion, capillary rise, capillary effect, or wicking) is the process of a liquid flowing in a narrow space without the assistance of external forces like gravity.
Capillary action is one of the most common fluid mechanical effects explored in the field of microfluidics. Jurin's law is named after James Jurin, who discovered it between 1718 and 1719. [2] His quantitative law suggests that the maximum height of liquid in a capillary tube is inversely proportional to the tube's diameter.
In physics, the Young–Laplace equation (/ l ə ˈ p l ɑː s /) is an algebraic equation that describes the capillary pressure difference sustained across the interface between two static fluids, such as water and air, due to the phenomenon of surface tension or wall tension, although use of the latter is only applicable if assuming that the wall is very thin.
The equation is named after Edward Wight Washburn; [1] also known as Lucas–Washburn equation, considering that Richard Lucas [2] wrote a similar paper three years earlier, or the Bell-Cameron-Lucas-Washburn equation, considering J.M. Bell and F.K. Cameron's discovery of the form of the equation in 1906.
Water potential is the potential energy of water per unit volume relative to pure water in reference conditions. Water potential quantifies the tendency of water to move from one area to another due to osmosis, gravity, mechanical pressure and matrix effects such as capillary action (which is caused by surface tension).
For reference, capillary pressures between air and brine (which is a significant system in the petrochemical industry) have been shown to range between 0.67 and 9.5 MPa. [11] There are various ways to predict, measure, or calculate capillary pressure relationships in the oil and gas industry. These include the following: [7]
Flux F through a surface, dS is the differential vector area element, n is the unit normal to the surface. Left: No flux passes in the surface, the maximum amount flows normal to the surface.
Flow through the pores in an oil reservoir has capillary number values in the order of 10 −6, whereas flow of oil through an oil well drill pipe has a capillary number in the order of unity. [ 4 ] The capillary number plays a role in the dynamics of capillary flow ; in particular, it governs the dynamic contact angle of a flowing droplet at ...