enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Critical mass - Wikipedia

    en.wikipedia.org/wiki/Critical_mass

    A critical mass is a mass of fissile material that self-sustains a fission chain reaction. In this case, known as criticality, k = 1. A steady rate of spontaneous fission causes a proportionally steady level of neutron activity. A supercritical mass is a mass which, once fission has started, will proceed at an increasing rate. [1]

  3. Uranium-235 - Wikipedia

    en.wikipedia.org/wiki/Uranium-235

    The nominal spherical critical mass for an untampered 235 U nuclear weapon is 56 kilograms (123 lb), [6] which would form a sphere 17.32 centimetres (6.82 in) in diameter. The material must be 85% or more of 235 U and is known as weapons grade uranium, though for a crude and inefficient weapon 20% enrichment is sufficient (called weapon(s ...

  4. Nuclear fission - Wikipedia

    en.wikipedia.org/wiki/Nuclear_fission

    The curve of binding energy is characterized by a broad maximum near mass number 60 at 8.6 MeV, then gradually decreases to 7.6 MeV at the highest mass numbers. Mass numbers higher than 238 are rare. At the lighter end of the scale, peaks are noted for helium-4, and the multiples such as beryllium-8, carbon-12, oxygen-16, neon-20 and magnesium-24.

  5. Nuclear reactor physics - Wikipedia

    en.wikipedia.org/wiki/Nuclear_reactor_physics

    The mere fact that an assembly is supercritical does not guarantee that it contains any free neutrons at all. At least one neutron is required to "strike" a chain reaction, and if the spontaneous fission rate is sufficiently low it may take a long time (in 235 U reactors, as long as many minutes) before a chance neutron encounter starts a chain reaction even if the reactor is supercritical.

  6. Frisch–Peierls memorandum - Wikipedia

    en.wikipedia.org/wiki/Frisch–Peierls_memorandum

    [39] Using modern values he found that to be "equal to about a microsecond, which makes the point about the rapidity of fission with fact [sic] neutrons". [39] In the original memorandum, if the neutrons had velocities of 10 9 cm/s, then they would have an average time between fission collisions of 2.6 × 10 −9 s. Therefore, Bernstein's time ...

  7. Criticality accident - Wikipedia

    en.wikipedia.org/wiki/Criticality_accident

    The neutrons are usually classified in 6 delayed neutron groups. [4] The average neutron lifetime considering delayed neutrons is approximately 0.1 sec, which makes the chain reaction relatively easy to control over time. The remaining 993 prompt neutrons are released very quickly, approximately 1 μs after the fission event.

  8. Nuclear fission product - Wikipedia

    en.wikipedia.org/wiki/Nuclear_fission_product

    The sum of the atomic mass of the two atoms produced by the fission of one fissile atom is always less than the atomic mass of the original atom. This is because some of the mass is lost as free neutrons, and once kinetic energy of the fission products has been removed (i.e., the products have been cooled to extract the heat provided by the reaction), then the mass associated with this energy ...

  9. Beta-decay stable isobars - Wikipedia

    en.wikipedia.org/wiki/Beta-decay_stable_isobars

    All odd mass numbers have only one beta decay stable nuclide. Among even mass number, five (124, 130, 136, 150, 154) have three beta-stable nuclides. None have more than three; all others have either one or two. From 2 to 34, all have only one. From 36 to 72, only eight (36, 40, 46, 50, 54, 58, 64, 70) have two, and the remaining 11 have one.