enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Implicit function theorem - Wikipedia

    en.wikipedia.org/wiki/Implicit_function_theorem

    The unit circle can be specified as the level curve f(x, y) = 1 of the function f(x, y) = x 2 + y 2.Around point A, y can be expressed as a function y(x).In this example this function can be written explicitly as () =; in many cases no such explicit expression exists, but one can still refer to the implicit function y(x).

  3. Implicit function - Wikipedia

    en.wikipedia.org/wiki/Implicit_function

    An implicit function is a function that is defined by an implicit equation, that relates one of the variables, considered as the value of the function, with the others considered as the arguments. [ 1 ] : 204–206 For example, the equation x 2 + y 2 − 1 = 0 {\displaystyle x^{2}+y^{2}-1=0} of the unit circle defines y as an implicit function ...

  4. Gaussian curvature - Wikipedia

    en.wikipedia.org/wiki/Gaussian_curvature

    They measure how the surface bends by different amounts in different directions from that point. We represent the surface by the implicit function theorem as the graph of a function, f, of two variables, in such a way that the point p is a critical point, that is, the gradient of f vanishes (this can always be attained by a suitable rigid motion).

  5. Differential geometry of surfaces - Wikipedia

    en.wikipedia.org/wiki/Differential_geometry_of...

    A major theorem, often called the fundamental theorem of the differential geometry of surfaces, asserts that whenever two objects satisfy the Gauss-Codazzi constraints, they will arise as the first and second fundamental forms of a regular surface. Using the first fundamental form, it is possible to define new objects on a regular surface.

  6. Lyapunov–Schmidt reduction - Wikipedia

    en.wikipedia.org/wiki/Lyapunov–Schmidt_reduction

    For the case when the linear operator (,) is invertible, the implicit function theorem assures that there exists a solution () satisfying the equation ((),) = at least locally close to . In the opposite case, when the linear operator f x ( x , λ ) {\displaystyle f_{x}(x,\lambda )} is non-invertible, the Lyapunov–Schmidt reduction can be ...

  7. Gauss's lemma (Riemannian geometry) - Wikipedia

    en.wikipedia.org/wiki/Gauss's_lemma_(Riemannian...

    In Riemannian geometry, Gauss's lemma asserts that any sufficiently small sphere centered at a point in a Riemannian manifold is perpendicular to every geodesic through the point. More formally, let M be a Riemannian manifold , equipped with its Levi-Civita connection , and p a point of M .

  8. Implicit curve - Wikipedia

    en.wikipedia.org/wiki/Implicit_curve

    The implicit function theorem describes conditions under which an equation (,) = can be solved implicitly for x and/or y – that is, under which one can validly write = or = (). This theorem is the key for the computation of essential geometric features of the curve: tangents , normals , and curvature .

  9. Geometrical properties of polynomial roots - Wikipedia

    en.wikipedia.org/wiki/Geometrical_properties_of...

    For simple roots, this results immediately from the implicit function theorem. This is true also for multiple roots, but some care is needed for the proof. A small change of coefficients may induce a dramatic change of the roots, including the change of a real root into a complex root with a rather large imaginary part (see Wilkinson's polynomial).