Search results
Results from the WOW.Com Content Network
def ternary_search (f, left, right, absolute_precision)-> float: """Find maximum of unimodal function f() within [left, right]. To find the minimum, reverse the if/else statement or reverse the comparison. """ while abs (right-left) >= absolute_precision: left_third = left + (right-left) / 3 right_third = right-(right-left) / 3 if f (left_third) < f (right_third): left = left_third else: right ...
The golden-section search is a technique for finding an extremum (minimum or maximum) of a function inside a specified interval. For a strictly unimodal function with an extremum inside the interval, it will find that extremum, while for an interval containing multiple extrema (possibly including the interval boundaries), it will converge to one of them.
In mathematical analysis, the maximum and minimum [a] of a function are, respectively, the greatest and least value taken by the function. Known generically as extremum , [ b ] they may be defined either within a given range (the local or relative extrema) or on the entire domain (the global or absolute extrema) of a function.
Powell's method, strictly Powell's conjugate direction method, is an algorithm proposed by Michael J. D. Powell for finding a local minimum of a function. The function need not be differentiable, and no derivatives are taken. The function must be a real-valued function of a fixed number of real-valued inputs. The caller passes in the initial point.
The task is then to find a minimum cardinality subset of left-vertices that has a non-trivial intersection with each of the right-vertices, which is precisely the hitting set problem. In the field of computational geometry, a hitting set for a collection of geometrical objects is also called a stabbing set or piercing set. [5]
In optimization, line search is a basic iterative approach to find a local minimum of an objective function:. It first finds a descent direction along which the objective function f {\displaystyle f} will be reduced, and then computes a step size that determines how far x {\displaystyle \mathbf {x} } should move along that direction.
Global optimization is a branch of applied mathematics and numerical analysis that attempts to find the global minima or maxima of a function or a set of functions on a given set. It is usually described as a minimization problem because the maximization of the real-valued function g ( x ) {\displaystyle g(x)} is equivalent to the minimization ...
The following is a dynamic programming implementation (with Python 3) which uses a matrix to keep track of the optimal solutions to sub-problems, and returns the minimum number of coins, or "Infinity" if there is no way to make change with the coins given. A second matrix may be used to obtain the set of coins for the optimal solution.