Search results
Results from the WOW.Com Content Network
In computer science, Prim's algorithm is a greedy algorithm that finds a minimum spanning tree for a weighted undirected graph. This means it finds a subset of the edges that forms a tree that includes every vertex , where the total weight of all the edges in the tree is minimized.
A planar graph and its minimum spanning tree. Each edge is labeled with its weight, which here is roughly proportional to its length. A minimum spanning tree (MST) or minimum weight spanning tree is a subset of the edges of a connected, edge-weighted undirected graph that connects all the vertices together, without any cycles and with the minimum possible total edge weight. [1]
An animation of generating a 30 by 20 maze using Prim's algorithm. This algorithm is a randomized version of Prim's algorithm. Start with a grid full of walls. Pick a cell, mark it as part of the maze. Add the walls of the cell to the wall list. While there are walls in the list: Pick a random wall from the list.
If is edge-unweighted every spanning tree possesses the same number of edges and thus the same weight. In the edge-weighted case, the spanning tree, the sum of the weights of the edges of which is lowest among all spanning trees of , is called a minimum spanning tree (MST). It is not necessarily unique.
However since T is a minimum spanning tree then T − f + e has the same weight as T, otherwise we get a contradiction and T would not be a minimum spanning tree. So T − f + e is a minimum spanning tree containing F + e and again P holds. Therefore, by the principle of induction, P holds when F has become a spanning tree, which is only ...
A faster randomized minimum spanning tree algorithm based in part on Borůvka's algorithm due to Karger, Klein, and Tarjan runs in expected O(E) time. [9] The best known (deterministic) minimum spanning tree algorithm by Bernard Chazelle is also based in part on Borůvka's and runs in O( E α( E , V )) time, where α is the inverse Ackermann ...
The set of these minimum spanning trees is called a minimum spanning forest, which contains every vertex in the graph. This algorithm is a greedy algorithm, choosing the best choice given any situation. It is the reverse of Kruskal's algorithm, which is another greedy algorithm to find a minimum spanning tree. Kruskal’s algorithm starts with ...
Example of rectilinear minimum spanning tree from random points. In graph theory, the rectilinear minimum spanning tree (RMST) of a set of n points in the plane (or more generally, in ) is a minimum spanning tree of that set, where the weight of the edge between each pair of points is the rectilinear distance between those two points.