Search results
Results from the WOW.Com Content Network
There is also an active R community around the tidyverse. For example, there is the TidyTuesday social data project organised by the Data Science Learning Community (DSLC), [ 16 ] where varied real-world datasets are released each week for the community to participate, share, practice, and make learning to work with data easier. [ 17 ]
But Dash also works for R, and most recently supports Julia, and while still described a Python framework, Python isn't used for the other languages, "describing Dash as a Python framework misses a key feature of its design: the Python side (the back end/server) of Dash was built to be lightweight and stateless [allowing] multiple back-end ...
Anaconda is an open source [9] [10] data science and artificial intelligence distribution platform for Python and R programming languages.Developed by Anaconda, Inc., [11] an American company [1] founded in 2012, [11] the platform is used to develop and manage data science and AI projects. [9]
knitr is a software engine for dynamic report generation with R. [1] [2] It is a package in the programming language R that enables integration of R code into LaTeX, LyX, HTML, Markdown, AsciiDoc, and reStructuredText documents. The purpose of knitr is to allow reproducible research in R through the means of literate programming.
R is a programming language for statistical computing and data visualization. It has been adopted in the fields of data mining, bioinformatics and data analysis. [9] The core R language is augmented by a large number of extension packages, containing reusable code, documentation, and sample data. R software is open-source and free software.
Pandas (styled as pandas) is a software library written for the Python programming language for data manipulation and analysis.In particular, it offers data structures and operations for manipulating numerical tables and time series.
Compared to libraries in other programming languages, R packages must conform to a relatively strict specification. [3] The Writing R Extensions manual [7] specifies a standard directory structure for R source code, data, documentation, and package metadata, which enables them to be installed and loaded using R's in-built package management ...
It works on Linux, Windows, macOS, and is available in Python, [8] R, [9] and models built using CatBoost can be used for predictions in C++, Java, [10] C#, Rust, Core ML, ONNX, and PMML. The source code is licensed under Apache License and available on GitHub. [6] InfoWorld magazine awarded the library "The best machine learning tools" in 2017.