enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Conversion of scales of temperature - Wikipedia

    en.wikipedia.org/wiki/Conversion_of_scales_of...

    This is a collection of temperature conversion formulas and comparisons among eight different temperature scales, several of which have long been obsolete.. Temperatures on scales that either do not share a numeric zero or are nonlinearly related cannot correctly be mathematically equated (related using the symbol =), and thus temperatures on different scales are more correctly described as ...

  3. Table of thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Table_of_thermodynamic...

    Quantity (common name/s) (Common) symbol/s Defining equation SI unit Dimension Temperature gradient: No standard symbol K⋅m −1: ΘL −1: Thermal conduction rate, thermal current, thermal/heat flux, thermal power transfer

  4. Thermistor - Wikipedia

    en.wikipedia.org/wiki/Thermistor

    where T(R) is the temperature of the thermistor as a function of its resistance R, is the temperature of the surroundings, and K is the dissipation constant, usually expressed in units of milliwatts per degree Celsius. At equilibrium, the two rates must be equal:

  5. Delisle scale - Wikipedia

    en.wikipedia.org/wiki/Delisle_scale

    Joseph-Nicolas Delisle. The Delisle scale is a temperature scale invented in 1732 by the French astronomer Joseph-Nicolas Delisle (1688–1768). [1] The Delisle scale is notable as one of the few temperature scales that are inverted from the amount of thermal energy they measure; unlike most other temperature scales, higher measurements in degrees Delisle are colder, while lower measurements ...

  6. Newton's law of cooling - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_cooling

    When stated in terms of temperature differences, Newton's law (with several further simplifying assumptions, such as a low Biot number and a temperature-independent heat capacity) results in a simple differential equation expressing temperature-difference as a function of time. The solution to that equation describes an exponential decrease of ...

  7. Heat equation - Wikipedia

    en.wikipedia.org/wiki/Heat_equation

    The temperature approaches a linear function because that is the stable solution of the equation: wherever temperature has a nonzero second spatial derivative, the time derivative is nonzero as well. The heat equation implies that peaks ( local maxima ) of u {\displaystyle u} will be gradually eroded down, while depressions ( local minima ...

  8. Heat transfer coefficient - Wikipedia

    en.wikipedia.org/wiki/Heat_transfer_coefficient

    In thermodynamics, the heat transfer coefficient or film coefficient, or film effectiveness, is the proportionality constant between the heat flux and the thermodynamic driving force for the flow of heat (i.e., the temperature difference, ΔT).

  9. Thermodynamic beta - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_beta

    SI temperature/coldness conversion scale: Temperatures in Kelvin scale are shown in blue (Celsius scale in green, Fahrenheit scale in red), coldness values in gigabyte per nanojoule are shown in black. Infinite temperature (coldness zero) is shown at the top of the diagram; positive values of coldness/temperature are on the right-hand side ...