enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Chain rule (probability) - Wikipedia

    en.wikipedia.org/wiki/Chain_rule_(probability)

    In probability theory, the chain rule [1] (also called the general product rule [2] [3]) describes how to calculate the probability of the intersection of, not necessarily independent, events or the joint distribution of random variables respectively, using conditional probabilities.

  3. Independence (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Independence_(probability...

    Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes.Two events are independent, statistically independent, or stochastically independent [1] if, informally speaking, the occurrence of one does not affect the probability of occurrence of the other or, equivalently, does not affect the odds.

  4. Probability measure - Wikipedia

    en.wikipedia.org/wiki/Probability_measure

    The conditional probability based on the intersection of events defined as: = (). [2] satisfies the probability measure requirements so long as () is not zero. [ 3 ] Probability measures are distinct from the more general notion of fuzzy measures in which there is no requirement that the fuzzy values sum up to 1 , {\displaystyle 1,} and the ...

  5. Inclusion–exclusion principle - Wikipedia

    en.wikipedia.org/wiki/Inclusion–exclusion...

    The double-counted elements are those in the intersection of the two sets and the count is corrected by subtracting the size of the intersection. The inclusion-exclusion principle, being a generalization of the two-set case, is perhaps more clearly seen in the case of three sets, which for the sets A, B and C is given by

  6. Probability space - Wikipedia

    en.wikipedia.org/wiki/Probability_space

    Two events, A and B are said to be mutually exclusive or disjoint if the occurrence of one implies the non-occurrence of the other, i.e., their intersection is empty. This is a stronger condition than the probability of their intersection being zero. If A and B are disjoint events, then P(A ∪ B) = P(A) + P(B). This extends to a (finite or ...

  7. Borel–Cantelli lemma - Wikipedia

    en.wikipedia.org/wiki/Borel–Cantelli_lemma

    The intersection of infinitely many such events is a set of outcomes common to all of them. However, the sum ΣPr( X n = 0) converges to π 2 /6 ≈ 1.645 < ∞, and so the Borel–Cantelli Lemma states that the set of outcomes that are common to infinitely many such events occurs with probability zero.

  8. Event (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Event_(probability_theory)

    In probability theory, an event is a set of outcomes of an experiment (a subset of the sample space) to which a probability is assigned. [1] A single outcome may be an element of many different events, [2] and different events in an experiment are usually not equally likely, since they may include very different groups of outcomes. [3]

  9. Conditional probability - Wikipedia

    en.wikipedia.org/wiki/Conditional_probability

    In this situation, the event A can be analyzed by a conditional probability with respect to B. If the event of interest is A and the event B is known or assumed to have occurred, "the conditional probability of A given B", or "the probability of A under the condition B", is usually written as P(A|B) [2] or occasionally P B (A).