enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Equidiagonal quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Equidiagonal_quadrilateral

    Equivalently, a quadrilateral has equal diagonals if and only if it has perpendicular bimedians, and it has perpendicular diagonals if and only if it has equal bimedians. [7] Silvester (2006) gives further connections between equidiagonal and orthodiagonal quadrilaterals, via a generalization of van Aubel's theorem. [8]

  3. Quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Quadrilateral

    In a convex quadrilateral, there is the following dual connection between the bimedians and the diagonals: [29] The two bimedians have equal length if and only if the two diagonals are perpendicular. The two bimedians are perpendicular if and only if the two diagonals have equal length.

  4. Parallelogram - Wikipedia

    en.wikipedia.org/wiki/Parallelogram

    The base pairs form a parallelogram with half the area of the quadrilateral, A q, as the sum of the areas of the four large triangles, A l is 2 A q (each of the two pairs reconstructs the quadrilateral) while that of the small triangles, A s is a quarter of A l (half linear dimensions yields quarter area), and the area of the parallelogram is A ...

  5. Rhombus - Wikipedia

    en.wikipedia.org/wiki/Rhombus

    Using congruent triangles, one can prove that the rhombus is symmetric across each of these diagonals. It follows that any rhombus has the following properties: Opposite angles of a rhombus have equal measure. The two diagonals of a rhombus are perpendicular; that is, a rhombus is an orthodiagonal quadrilateral. Its diagonals bisect opposite ...

  6. Isosceles trapezoid - Wikipedia

    en.wikipedia.org/wiki/Isosceles_trapezoid

    The diagonals of an isosceles trapezoid have the same length; that is, every isosceles trapezoid is an equidiagonal quadrilateral. Moreover, the diagonals divide each other in the same proportions. As pictured, the diagonals AC and BD have the same length (AC = BD) and divide each other into segments of the same length (AE = DE and BE = CE).

  7. Kite (geometry) - Wikipedia

    en.wikipedia.org/wiki/Kite_(geometry)

    [19] [20] When an equidiagonal kite has side lengths less than or equal to its diagonals, like this one or the square, it is one of the quadrilaterals with the greatest ratio of area to diameter. [21] A kite with three 108° angles and one 36° angle forms the convex hull of the lute of Pythagoras, a fractal made of nested pentagrams. [22]

  8. Trapezoid - Wikipedia

    en.wikipedia.org/wiki/Trapezoid

    The angle between a side and a diagonal is equal to the angle between the opposite side and the same diagonal. The diagonals cut each other in mutually the same ratio (this ratio is the same as that between the lengths of the parallel sides). The diagonals cut the quadrilateral into four triangles of which one opposite pair have equal areas ...

  9. Varignon's theorem - Wikipedia

    en.wikipedia.org/wiki/Varignon's_theorem

    An arbitrary quadrilateral and its diagonals. Bases of similar triangles are parallel to the blue diagonal. Ditto for the red diagonal. The base pairs form a parallelogram with half the area of the quadrilateral, A q, as the sum of the areas of the four large triangles, A l is 2 A q (each of the two pairs reconstructs the quadrilateral) while that of the small triangles, A s is a quarter of A ...