Search results
Results from the WOW.Com Content Network
The theory was rounded out by establishing that a Grothendieck topos was a category of sheaves, where now the word sheaf had acquired an extended meaning, since it involved a Grothendieck topology. The idea of a Grothendieck topology (also known as a site ) has been characterised by John Tate as a bold pun on the two senses of Riemann surface .
In mathematics, The fundamental theorem of topos theory states that the slice / of a topos over any one of its objects is itself a topos. Moreover, if there is a morphism f : A → B {\displaystyle f:A\rightarrow B} in E {\displaystyle \mathbf {E} } then there is a functor f ∗ : E / B → E / A {\displaystyle f^{*}:\mathbf {E} /B\rightarrow ...
Download as PDF; Printable version; In other projects Wikidata item; ... Pages in category "Topos theory" The following 17 pages are in this category, out of 17 total.
Kleene, S. C. (1945). "On the interpretation of intuitionistic number theory". Journal of Symbolic Logic. 10 (4): 109–124. doi:10.2307/2269016. JSTOR 2269016. S2CID 40471120. Phoa, Wesley (1992). An introduction to fibrations, topos theory, the effective topos and modest sets (Technical report). Laboratory for Foundations of Computer Science ...
In mathematics, a topos (US: / ˈ t ɒ p ɒ s /, UK: / ˈ t oʊ p oʊ s, ˈ t oʊ p ɒ s /; plural topoi / ˈ t ɒ p ɔɪ / or / ˈ t oʊ p ɔɪ /, or toposes) is a category that behaves like the category of sheaves of sets on a topological space (or more generally: on a site).
His thesis, completed at the University of Cambridge in 1974, was entitled "Some Aspects of Internal Category Theory in an Elementary Topos". [ 3 ] Peter Johnstone is a choral singer, having sung for over thirty years with the Cambridge University Musical Society and since 2004 with the (London) Bach Choir .
In his 2000 article "Comments on the Development of Topos Theory", Lawvere discusses his motivation for simplifying and generalizing Grothendieck's concept of a topos. He explains that his interest stemmed from his earlier studies in physics, particularly the foundations of continuum physics as inspired by Truesdell, Noll, and others. He notes ...
Alternative PDF with hyperlinks) Lurie, Jacob (2009). Higher Topos Theory. Princeton University Press. arXiv: math.CT/0608040. ISBN 978-0-691-14048-3. As PDF. nLab, the collective and open wiki notebook project on higher category theory and applications in physics, mathematics and philosophy