Search results
Results from the WOW.Com Content Network
Fig.5: A second, horizontal plane of projection is added, perpendicular to the first. Fig.6: Projectors emanate parallel from all points of the object perpendicular to the second plane of projection. Fig.7: An image is created thereby. Fig.8: The third plane of projection is added, perpendicular to the previous two.
Isometric graph paper can be placed under a normal piece of drawing paper to help achieve the effect without calculation. In a similar way, an isometric view can be obtained in a 3D scene. Starting with the camera aligned parallel to the floor and aligned to the coordinate axes, it is first rotated horizontally (around the vertical axis) by ± ...
Orthographic projection (also orthogonal projection and analemma) [a] is a means of representing three-dimensional objects in two dimensions.Orthographic projection is a form of parallel projection in which all the projection lines are orthogonal to the projection plane, [2] resulting in every plane of the scene appearing in affine transformation on the viewing surface.
A cross-section of a solid right circular cylinder extending between two bases is a disk if the cross-section is parallel to the cylinder's base, or an elliptic region (see diagram at right) if it is neither parallel nor perpendicular to the base. If the cutting plane is perpendicular to the base it consists of a rectangle (not shown) unless it ...
Further associated with each plane is a unique line, called the plane's pole, that passes through the origin and is perpendicular to the plane. This line can be plotted as a point on the disk just as any line through the origin can. So the stereographic projection also lets us visualize planes as points in the disk.
A straight line in hyperbolic n-space is modeled by a geodesic on the hyperboloid. A geodesic on the hyperboloid is the (non-empty) intersection of the hyperboloid with a two-dimensional linear subspace (including the origin) of the n+1-dimensional Minkowski space. If we take u and v to be basis vectors of that linear subspace with
Any graph (which need not be simple; loops and multiple edges are allowed) is a uniform incidence structure with two points per line. For these examples, the vertices of the graph form the point set, the edges of the graph form the line set, and incidence means that a vertex is an endpoint of an edge.
D 1h and C 2v: group of order 4 with a reflection in a plane and a 180° rotation through a line in that plane; D 1d and C 2h: group of order 4 with a reflection in a plane and a 180° rotation through a line perpendicular to that plane. S 2 is the group of order 2 with a single inversion (C i). "Equal" is meant here as the same up to conjugacy ...