enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dot product - Wikipedia

    en.wikipedia.org/wiki/Dot_product

    In such a presentation, the notions of length and angle are defined by means of the dot product. The length of a vector is defined as the square root of the dot product of the vector by itself, and the cosine of the (non oriented) angle between two vectors of length one is defined as their dot product. So the equivalence of the two definitions ...

  3. Vector algebra relations - Wikipedia

    en.wikipedia.org/wiki/Vector_algebra_relations

    The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.

  4. Vector multiplication - Wikipedia

    en.wikipedia.org/wiki/Vector_multiplication

    The dot product of two vectors can be defined as the product of the magnitudes of the two vectors and the cosine of the angle between the two vectors. Alternatively, it is defined as the product of the projection of the first vector onto the second vector and the magnitude of the second vector.

  5. Vector projection - Wikipedia

    en.wikipedia.org/wiki/Vector_projection

    The scalar projection is defined as [2] = ‖ ‖ ⁡ = ^ where the operator ⋅ denotes a dot product, ‖a‖ is the length of a, and θ is the angle between a and b. The scalar projection is equal in absolute value to the length of the vector projection, with a minus sign if the direction of the projection is opposite to the direction of b ...

  6. Cosine similarity - Wikipedia

    en.wikipedia.org/wiki/Cosine_similarity

    Cosine similarity is the cosine of the angle between the vectors; that is, it is the dot product of the vectors divided by the product of their lengths. It follows that the cosine similarity does not depend on the magnitudes of the vectors, but only on their angle. The cosine similarity always belongs to the interval [,].

  7. Euclidean vector - Wikipedia

    en.wikipedia.org/wiki/Euclidean_vector

    If the dot product of two vectors is defined—a scalar-valued product of two vectors—then it is also possible to define a length; the dot product gives a convenient algebraic characterization of both angle (a function of the dot product between any two non-zero vectors) and length (the square root of the dot product of a vector by itself).

  8. Vector notation - Wikipedia

    en.wikipedia.org/wiki/Vector_notation

    Using the modern terms cross product (×) and dot product (.), the quaternion product of two vectors p and q can be written pq = –p.q + p×q. In 1878, W. K. Clifford severed the two products to make the quaternion operation useful for students in his textbook Elements of Dynamic.

  9. Orthonormality - Wikipedia

    en.wikipedia.org/wiki/Orthonormality

    In the Cartesian plane, two vectors are said to be perpendicular if the angle between them is 90° (i.e. if they form a right angle). This definition can be formalized in Cartesian space by defining the dot product and specifying that two vectors in the plane are orthogonal if their dot product is zero.