enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convection (heat transfer) - Wikipedia

    en.wikipedia.org/wiki/Convection_(Heat_transfer)

    Convection (or convective heat transfer) is the transfer of heat from one place to another due to the movement of fluid. Although often discussed as a distinct method of heat transfer, convective heat transfer involves the combined processes of conduction (heat diffusion) and advection (heat transfer by bulk fluid flow ).

  3. Heat transfer physics - Wikipedia

    en.wikipedia.org/wiki/Heat_transfer_physics

    Conduction heat flux q k for ideal gas is derived with the gas kinetic theory or the Boltzmann transport equations, and the thermal conductivity is =, -, where u f 2 1/2 is the RMS (root mean square) thermal velocity (3k B T/m from the MB distribution function, m: atomic mass) and τ f-f is the relaxation time (or intercollision time period ...

  4. Heat transfer - Wikipedia

    en.wikipedia.org/wiki/Heat_transfer

    Convective heat transfer, or simply, convection, is the transfer of heat from one place to another by the movement of fluids, a process that is essentially the transfer of heat via mass transfer. The bulk motion of fluid enhances heat transfer in many physical situations, such as between a solid surface and the fluid. [10]

  5. Convection heater - Wikipedia

    en.wikipedia.org/wiki/Convection_heater

    A convection heater, also known as a convector heater, is a type of heater that utilizes convection currents [1] to heat and circulate air. These currents move through the appliance and across its heating element, [ 2 ] using thermal conduction [ 3 ] to warm the air and decrease its density relative to colder air, causing it to rise.

  6. Conjugate convective heat transfer - Wikipedia

    en.wikipedia.org/wiki/Conjugate_Convective_Heat...

    The contemporary conjugate convective heat transfer model was developed after computers came into wide use in order to substitute the empirical relation of proportionality of heat flux to temperature difference with heat transfer coefficient which was the only tool in theoretical heat convection since the times of Newton. This model, based on a ...

  7. Churchill–Bernstein equation - Wikipedia

    en.wikipedia.org/wiki/Churchill–Bernstein_equation

    Newton's law of cooling (in the form of heat loss per surface area being equal to heat transfer coefficient multiplied by temperature gradient) can then be invoked to determine the heat loss or gain from the object, fluid and/or surface temperatures, and the area of the object, depending on what information is known.

  8. Nusselt number - Wikipedia

    en.wikipedia.org/wiki/Nusselt_number

    The Nusselt number is the ratio of total heat transfer (convection + conduction) to conductive heat transfer across a boundary. The convection and conduction heat flows are parallel to each other and to the surface normal of the boundary surface, and are all perpendicular to the mean fluid flow in the simple case.

  9. Heat transfer coefficient - Wikipedia

    en.wikipedia.org/wiki/Heat_transfer_coefficient

    It is used in calculating the heat transfer, typically by convection or phase transition between a fluid and a solid. The heat transfer coefficient has SI units in watts per square meter per kelvin (W/(m 2 K)). The overall heat transfer rate for combined modes is usually expressed in terms of an overall conductance or heat transfer coefficient ...