enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    Using row operations to convert a matrix into reduced row echelon form is sometimes called Gauss–Jordan elimination. In this case, the term Gaussian elimination refers to the process until it has reached its upper triangular, or (unreduced) row echelon form. For computational reasons, when solving systems of linear equations, it is sometimes ...

  3. Kron reduction - Wikipedia

    en.wikipedia.org/wiki/Kron_reduction

    Select the Kth row/column used to model the undesired internal nodes to be eliminated. Apply the below formula to all other matrix entries that do not reside on the Kth row and column. Then simply remove the Kth row and column of the matrix, which reduces the size of the matrix by one. Kron Reduction for the Kth row/column of an NxN matrix:

  4. Row echelon form - Wikipedia

    en.wikipedia.org/wiki/Row_echelon_form

    A matrix is in reduced row echelon form if it is in row echelon form, with the additional property that the first nonzero entry of each row is equal to and is the only nonzero entry of its column. The reduced row echelon form of a matrix is unique and does not depend on the sequence of elementary row operations used to obtain it.

  5. Reduction (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Reduction_(mathematics)

    In the case of matrices, the process involves manipulating either the rows or the columns of the matrix and so is usually referred to as row-reduction or column-reduction, respectively. Often the aim of reduction is to transform a matrix into its "row-reduced echelon form" or "row-echelon form"; this is the goal of Gaussian elimination.

  6. Pivot element - Wikipedia

    en.wikipedia.org/wiki/Pivot_element

    A pivot position in a matrix, A, is a position in the matrix that corresponds to a row–leading 1 in the reduced row echelon form of A. Since the reduced row echelon form of A is unique, the pivot positions are uniquely determined and do not depend on whether or not row interchanges are performed in the reduction process. Also, the pivot of a ...

  7. Rank factorization - Wikipedia

    en.wikipedia.org/wiki/Rank_factorization

    In practice, we can construct one specific rank factorization as follows: we can compute , the reduced row echelon form of .Then is obtained by removing from all non-pivot columns (which can be determined by looking for columns in which do not contain a pivot), and is obtained by eliminating any all-zero rows of .

  8. Elementary matrix - Wikipedia

    en.wikipedia.org/wiki/Elementary_matrix

    A row can be replaced by the sum of that row and a multiple of another row. R i + k R j → R i , where i ≠ j {\displaystyle R_{i}+kR_{j}\rightarrow R_{i},{\mbox{where }}i\neq j} If E is an elementary matrix, as described below, to apply the elementary row operation to a matrix A , one multiplies A by the elementary matrix on the left, EA .

  9. System of linear equations - Wikipedia

    en.wikipedia.org/wiki/System_of_linear_equations

    Type 3: Add to one row a scalar multiple of another. Because these operations are reversible, the augmented matrix produced always represents a linear system that is equivalent to the original. There are several specific algorithms to row-reduce an augmented matrix, the simplest of which are Gaussian elimination and Gauss–Jordan elimination ...