Search results
Results from the WOW.Com Content Network
A table can be created by taking the Cartesian product of a set of rows and a set of columns. If the Cartesian product rows × columns is taken, the cells of the table contain ordered pairs of the form (row value, column value). [4] One can similarly define the Cartesian product of n sets, also known as an n-fold Cartesian product, which can be ...
In set theory, a Cartesian product is a mathematical operation which returns a set (or product set) from multiple sets. That is, for sets A and B, the Cartesian product A × B is the set of all ordered pairs (a, b) —where a ∈ A and b ∈ B. [5] The class of all things (of a given type) that have Cartesian products is called a Cartesian ...
In topology and related areas of mathematics, a product space is the Cartesian product of a family of topological spaces equipped with a natural topology called the product topology. This topology differs from another, perhaps more natural-seeming, topology called the box topology , which can also be given to a product space and which agrees ...
Furthermore, given a set , the product order over the Cartesian product {,} can be identified with the inclusion ordering of subsets of . [4] The notion applies equally well to preorders . The product order is also the categorical product in a number of richer categories, including lattices and Boolean algebras .
The Cartesian product, S × T, of two well-ordered sets S and T can be well-ordered by a variant of lexicographical order that puts the least significant position first. Effectively, each element of T is replaced by a disjoint copy of S. The order-type of the Cartesian product is the ordinal that results from multiplying the order-types of S and T.
Then, for the minimal product measure the measure of a set is the sum of the measures of its horizontal sections, while for the maximal product measure a set has measure infinity unless it is contained in the union of a countable number of sets of the form A×B, where either A has Lebesgue measure 0 or B is a single point. (In this case the ...
The set of all ordered pairs whose first entry is in some set A and whose second entry is in some set B is called the Cartesian product of A and B, and written A × B. A binary relation between sets A and B is a subset of A × B. The (a, b) notation may be used for other purposes, most notably as denoting open intervals on the real number line ...
In the special case of the category of groups, a product always exists: the underlying set of is the Cartesian product of the underlying sets of the , the group operation is componentwise multiplication, and the (homo)morphism : is the projection sending each tuple to its th coordinate.