Search results
Results from the WOW.Com Content Network
The two regimes of dry friction are 'static friction' ("stiction") between non-moving surfaces, and kinetic friction (sometimes called sliding friction or dynamic friction) between moving surfaces. Coulomb friction, named after Charles-Augustin de Coulomb , is an approximate model used to calculate the force of dry friction.
Coulomb damping is a type of constant mechanical damping in which the system's kinetic energy is absorbed via sliding friction (the friction generated by the relative motion of two surfaces that press against each other). Coulomb damping is a common damping mechanism that occurs in machinery.
Shear resistance law: Coulomb formulated the shear resistance of soils as = + , where represents cohesion, is normal stress, and is the angle of internal friction. Active and passive earth pressure : He introduced the concepts of active and passive earth pressure limits, which describe the conditions under which soil exerts pressure on a ...
Coulomb's inverse-square law, or simply Coulomb's law, is an experimental law [1] of physics that calculates the amount of force between two electrically charged particles at rest. This electric force is conventionally called the electrostatic force or Coulomb force . [ 2 ]
It does assume Coulomb's friction law, which more or less requires (scrupulously) clean surfaces. This theory is for massive bodies such as the railway wheel-rail contact. With respect to road-tire interaction, an important contribution concerns the so-called magic tire formula by Hans Pacejka. [7] In the 1970s, many numerical models were devised.
The force of friction is independent of the apparent area of contact. (Amontons' 2nd law) Kinetic friction is independent of the sliding velocity. (Coulomb's law) The first and second laws, which were founded by Amontons, and the third law, which was founded by Coulomb later, are called the Amontons-Coulomb laws of friction.
where is a parameter, is the value of when the plastic strain is zero (also called the initial cohesion yield stress), is the angle made by the yield surface in the Rendulic plane at high values of (this angle is also called the dilation angle), and (,) is an appropriate function that is also smooth in the deviatoric stress plane.
Since the Painlevé paradoxes are based on a mechanical model of Coulomb friction, where the calculated friction force can have multiple values when the contact point has no tangential velocity, this is a simplified model of contact. It does, nevertheless, encapsulate the main dynamical effects of friction, such as sticking and slipping zones.