enow.com Web Search

  1. Ad

    related to: calculus of variations solved examples

Search results

  1. Results from the WOW.Com Content Network
  2. Calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Calculus_of_Variations

    Calculus of variations is concerned with variations of functionals, which are small changes in the functional's value due to small changes in the function that is its argument. The first variation [ l ] is defined as the linear part of the change in the functional, and the second variation [ m ] is defined as the quadratic part.

  3. Plateau's problem - Wikipedia

    en.wikipedia.org/wiki/Plateau's_problem

    An example of such singular solution of the Plateau problem is the Simons cone, a cone over in that was first described by Jim Simons and was shown to be an area minimizer by Bombieri, De Giorgi and Giusti. [1]

  4. Euler–Lagrange equation - Wikipedia

    en.wikipedia.org/wiki/Euler–Lagrange_equation

    Lagrange solved this problem in 1755 and sent the solution to Euler. Both further developed Lagrange's method and applied it to mechanics, which led to the formulation of Lagrangian mechanics. Their correspondence ultimately led to the calculus of variations, a term coined by Euler himself in 1766. [3]

  5. Variational principle - Wikipedia

    en.wikipedia.org/wiki/Variational_principle

    For example, the problem of determining the shape of a hanging chain suspended at both ends—a catenary—can be solved using variational calculus, and in this case, the variational principle is the following: The solution is a function that minimizes the gravitational potential energy of the chain.

  6. Direct method in the calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Direct_method_in_the...

    In mathematics, the direct method in the calculus of variations is a general method for constructing a proof of the existence of a minimizer for a given functional, [1] introduced by Stanisław Zaremba and David Hilbert around 1900. The method relies on methods of functional analysis and topology. As well as being used to prove the existence of ...

  7. Calculus of variations - en.wikipedia.org

    en.wikipedia.org/.../Calculus_of_variations

    The calculus of variations (or variational calculus) is a field of mathematical analysis that uses variations, which are small changes in functions and functionals, to find maxima

  8. Hilbert's nineteenth problem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_nineteenth_problem

    David Hilbert presented what is now called his nineteenth problem in his speech at the second International Congress of Mathematicians. [5] In (Hilbert 1900, p. 288) he states that, in his opinion, one of the most remarkable facts of the theory of analytic functions is that there exist classes of partial differential equations which admit only analytic functions as solutions, listing Laplace's ...

  9. Fundamental lemma of the calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Fundamental_lemma_of_the...

    In mathematics, specifically in the calculus of variations, a variation δf of a function f can be concentrated on an arbitrarily small interval, but not a single point. Accordingly, the necessary condition of extremum ( functional derivative equal zero) appears in a weak formulation (variational form) integrated with an arbitrary function δf .

  1. Ad

    related to: calculus of variations solved examples