enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dot product - Wikipedia

    en.wikipedia.org/wiki/Dot_product

    In such a presentation, the notions of length and angle are defined by means of the dot product. The length of a vector is defined as the square root of the dot product of the vector by itself, and the cosine of the (non oriented) angle between two vectors of length one is defined as their dot product. So the equivalence of the two definitions ...

  3. Euclidean vector - Wikipedia

    en.wikipedia.org/wiki/Euclidean_vector

    If the dot product of two vectors is defined—a scalar-valued product of two vectors—then it is also possible to define a length; the dot product gives a convenient algebraic characterization of both angle (a function of the dot product between any two non-zero vectors) and length (the square root of the dot product of a vector by itself).

  4. Cauchy–Schwarz inequality - Wikipedia

    en.wikipedia.org/wiki/Cauchy–Schwarz_inequality

    where , is the inner product.Examples of inner products include the real and complex dot product; see the examples in inner product.Every inner product gives rise to a Euclidean norm, called the canonical or induced norm, where the norm of a vector is denoted and defined by ‖ ‖:= , , where , is always a non-negative real number (even if the inner product is complex-valued).

  5. Norm (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Norm_(mathematics)

    This norm can be defined as the square root of the inner product of a vector with itself. A seminorm satisfies the first two properties of a norm, but may be zero for vectors other than the origin. [1] A vector space with a specified norm is called a normed vector space.

  6. Vector algebra relations - Wikipedia

    en.wikipedia.org/wiki/Vector_algebra_relations

    The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.

  7. Talk:Dot product - Wikipedia

    en.wikipedia.org/wiki/Talk:Dot_product

    If anything the dot product is clearer and easier to interpret. To take one example from above: "the length of a vector is defined as the square root of the dot product of the vector by itself", this can only mean one thing as the dot product is a binary operation on vectors and so requires two of them.

  8. AOL Mail

    mail.aol.com/?icid=aol.com-nav

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. List of quantum logic gates - Wikipedia

    en.wikipedia.org/wiki/List_of_quantum_logic_gates

    square root of Z: 1 ... Taking the dot product of any unit vector with the above formula generates the expression of any single qubit gate when sandwiched within ...