enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dijkstra's algorithm - Wikipedia

    en.wikipedia.org/wiki/Dijkstra's_algorithm

    Dijkstra's algorithm finds the shortest path from a given source node to every other node. [7]: 196–206 It can be used to find the shortest path to a specific destination node, by terminating the algorithm after determining the shortest path to the destination node. For example, if the nodes of the graph represent cities, and the costs of ...

  3. Shortest path problem - Wikipedia

    en.wikipedia.org/wiki/Shortest_path_problem

    Find the Shortest Path: Use a shortest path algorithm (e.g., Dijkstra's algorithm, Bellman-Ford algorithm) to find the shortest path from the source node to the sink node in the residual graph. Augment the Flow: Find the minimum capacity along the shortest path. Increase the flow on the edges of the shortest path by this minimum capacity.

  4. k shortest path routing - Wikipedia

    en.wikipedia.org/wiki/K_shortest_path_routing

    Links that do not satisfy constraints on the shortest path are removed from the graph s: the source node; t: the destination node; K: the number of shortest paths to find; p u: a path from s to u; B is a heap data structure containing paths; P: set of shortest paths from s to t; count u: number of shortest paths found to node u; Algorithm: P ...

  5. Pathfinding - Wikipedia

    en.wikipedia.org/wiki/Pathfinding

    Two primary problems of pathfinding are (1) to find a path between two nodes in a graph; and (2) the shortest path problem—to find the optimal shortest path. Basic algorithms such as breadth-first and depth-first search address the first problem by exhausting all possibilities; starting from the given node, they iterate over all potential ...

  6. A* search algorithm - Wikipedia

    en.wikipedia.org/wiki/A*_search_algorithm

    A* is an informed search algorithm, or a best-first search, meaning that it is formulated in terms of weighted graphs: starting from a specific starting node of a graph, it aims to find a path to the given goal node having the smallest cost (least distance travelled, shortest time, etc.).

  7. Yen's algorithm - Wikipedia

    en.wikipedia.org/wiki/Yen's_algorithm

    B = []; for k from 1 to K: // The spur node ranges from the first node to the next to last node in the previous k-shortest path. for i from 0 to size(A[k − 1]) − 2: // Spur node is retrieved from the previous k-shortest path, k − 1. spurNode = A[k-1].node(i); // The sequence of nodes from the source to the spur node of the previous k ...

  8. Parallel single-source shortest path algorithm - Wikipedia

    en.wikipedia.org/wiki/Parallel_single-source...

    The maximum shortest path weight for the source node is defined as ():= {⁡ (,): ⁡ (,) <}, abbreviated . [1] Also, the size of a path is defined to be the number of edges on the path. We distinguish light edges from heavy edges, where light edges have weight at most Δ {\displaystyle \Delta } and heavy edges have weight bigger than Δ ...

  9. Iterative deepening A* - Wikipedia

    en.wikipedia.org/wiki/Iterative_deepening_A*

    Iterative deepening A* (IDA*) is a graph traversal and path search algorithm that can find the shortest path between a designated start node and any member of a set of goal nodes in a weighted graph. It is a variant of iterative deepening depth-first search that borrows the idea to use a heuristic function to conservatively estimate the ...