Search results
Results from the WOW.Com Content Network
Charge carrier density, also known as carrier concentration, denotes the number of charge carriers per volume. In SI units, it is measured in m −3. As with any density, in principle it can depend on position. However, usually carrier concentration is given as a single number, and represents the average carrier density over the whole material.
Nevertheless, the absorbance unit or AU is commonly used in ultraviolet–visible spectroscopy and its high-performance liquid chromatography applications, often in derived units such as the milli-absorbance unit (mAU) or milli-absorbance unit-minutes (mAU×min), a unit of absorbance integrated over time. [6] Absorbance is related to optical ...
The effective mass is used in transport calculations, such as transport of electrons under the influence of fields or carrier gradients, but it also is used to calculate the carrier density and density of states in semiconductors. These masses are related but, as explained in the previous sections, are not the same because the weightings of ...
A set of base units in the atomic system as in one proposal are the electron rest mass, the magnitude of the electronic charge, the Planck constant, and the permittivity. [6] [9] In the atomic units system, each of these takes the value 1; the corresponding values in the International System of Units [10]: 132 are given in the table.
Electron mobility is almost always specified in units of cm 2 /(V⋅s). This is different from the SI unit of mobility, m 2 /(V⋅s). They are related by 1 m 2 /(V⋅s) = 10 4 cm 2 /(V⋅s). Conductivity is proportional to the product of mobility and carrier concentration. For example, the same conductivity could come from a small number of ...
Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal nĚ‚, d is the dipole moment between two point charges, the volume density of these is the polarization density P.
The Elliott formula describes analytically, or with few adjustable parameters such as the dephasing constant, the light absorption or emission spectra of solids. It was originally derived by Roger James Elliott to describe linear absorption based on properties of a single electron–hole pair. [ 1 ]
The SI unit of molar absorption coefficient is the square metre per mole (m 2 /mol), but in practice, quantities are usually expressed in terms of M −1 ⋅cm −1 or L⋅mol −1 ⋅cm −1 (the latter two units are both equal to 0.1 m 2 /mol). In older literature, the cm 2 /mol is sometimes used; 1 M −1 ⋅cm −1 equals 1000 cm 2 /mol.