Search results
Results from the WOW.Com Content Network
In optics, Cauchy's transmission equation is an empirical relationship between the refractive index and wavelength of light for a particular transparent material. It is named for the mathematician Augustin-Louis Cauchy , who originally defined it in 1830 in his article "The refraction and reflection of light".
The composition of low-expansion borosilicate glass, such as those laboratory glasses mentioned above, is approximately 80% silica, 13% boric oxide, 4% sodium oxide or potassium oxide and 2–3% aluminium oxide. Though more difficult to make than traditional glass due to its high melting temperature, it is economical to produce.
Refraction at interface. Many materials have a well-characterized refractive index, but these indices often depend strongly upon the frequency of light, causing optical dispersion. Standard refractive index measurements are taken at the "yellow doublet" sodium D line, with a wavelength (λ) of 589 nanometers.
The calculation of glass properties allows "fine-tuning" of desired material characteristics, e.g., the refractive index. [1]The calculation of glass properties (glass modeling) is used to predict glass properties of interest or glass behavior under certain conditions (e.g., during production) without experimental investigation, based on past data and experience, with the intention to save ...
Refractive index variation for SF11 flint glass, BK7 borosilicate crown glass, and fused quartz, and calculation for two Abbe numbers for SF11. The Abbe number, [ 1 ] V d , {\displaystyle V_{\mathsf {d}}\ ,} of a material is defined as
Optical glass refers to a quality of glass suitable for the manufacture of optical systems such as optical lenses, prisms or mirrors.Unlike window glass or crystal, whose formula is adapted to the desired aesthetic effect, optical glass contains additives designed to modify certain optical or mechanical properties of the glass: refractive index, dispersion, transmittance, thermal expansion and ...
The refractive index of materials varies with the wavelength (and frequency) of light. [27] This is called dispersion and causes prisms and rainbows to divide white light into its constituent spectral colors. [28] As the refractive index varies with wavelength, so will the refraction angle as light goes from one material to another.
For common optical glasses, the refractive index calculated with the three-term Sellmeier equation deviates from the actual refractive index by less than 5×10 −6 over the wavelengths' range [5] of 365 nm to 2.3 μm, which is of the order of the homogeneity of a glass sample. [6]