Search results
Results from the WOW.Com Content Network
Important to applications in mathematics and physics [1] is the notion of a flow on a manifold. In particular, if M {\displaystyle M} is a smooth manifold and X {\displaystyle X} is a smooth vector field , one is interested in finding integral curves to X {\displaystyle X} .
Let :, (,) be a (left) group action of a Lie group on a smooth manifold ; it is called a Lie group action (or smooth action) if the map is differentiable. Equivalently, a Lie group action of G {\displaystyle G} on M {\displaystyle M} consists of a Lie group homomorphism G → D i f f ( M ) {\displaystyle G\to \mathrm {Diff} (M)} .
Let be a smooth manifold; a (smooth) distribution assigns to any point a vector subspace in a smooth way. More precisely, consists of a collection {} of vector subspaces with the following property: Around any there exist a neighbourhood and a collection of vector fields, …, such that, for any point , span {(), …, ()} =.
1) Any indefinite non-diagonalizable intersection form gives rise to a four-dimensional topological manifold with no differentiable structure (so cannot be smoothed). 2) Two smooth simply-connected 4-manifolds are homeomorphic , if and only if, their intersection forms have the same rank , signature , and parity.
The cotangent bundle T*N of any n-dimensional manifold N is itself a manifold (of dimension 2n) and supports naturally an exact symplectic structure ω = dλ. (This 1-form λ is sometimes called the Liouville form). There are several ways to construct an associated contact manifold, some of dimension 2n − 1, some of dimension 2n + 1.
Symplectic manifolds arise from classical mechanics; in particular, they are a generalization of the phase space of a closed system. [1] In the same way the Hamilton equations allow one to derive the time evolution of a system from a set of differential equations, the symplectic form should allow one to obtain a vector field describing the flow of the system from the differential of a ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
A relatively 'easy' result is to prove that any two embeddings of a 1-manifold into are isotopic (see Knot theory#Higher dimensions). This is proved using general position, which also allows to show that any two embeddings of an n-manifold into + are isotopic. This result is an isotopy version of the weak Whitney embedding theorem.