enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of moments of inertia - Wikipedia

    en.wikipedia.org/wiki/List_of_moments_of_inertia

    The moments of inertia of a mass have units of dimension ML 2 ([mass] × [length] 2). It should not be confused with the second moment of area, which has units of dimension L 4 ([length] 4) and is used in beam calculations. The mass moment of inertia is often also known as the rotational inertia, and sometimes as the angular mass.

  3. List of second moments of area - Wikipedia

    en.wikipedia.org/wiki/List_of_second_moments_of_area

    The second moment of area, also known as area moment of inertia, is a geometrical property of an area which reflects how its points are distributed with respect to an arbitrary axis. The unit of dimension of the second moment of area is length to fourth power, L 4, and should not be confused with the mass moment of inertia.

  4. Moment of inertia - Wikipedia

    en.wikipedia.org/wiki/Moment_of_inertia

    Note on second moment of area: The moment of inertia of a body moving in a plane and the second moment of area of a beam's cross-section are often confused. The moment of inertia of a body with the shape of the cross-section is the second moment of this area about the z {\displaystyle z} -axis perpendicular to the cross-section, weighted by its ...

  5. Second polar moment of area - Wikipedia

    en.wikipedia.org/wiki/Second_polar_moment_of_area

    The second polar moment of area, also known (incorrectly, colloquially) as "polar moment of inertia" or even "moment of inertia", is a quantity used to describe resistance to torsional deformation (), in objects (or segments of an object) with an invariant cross-section and no significant warping or out-of-plane deformation. [1]

  6. Second moment of area - Wikipedia

    en.wikipedia.org/wiki/Second_moment_of_area

    The second moment of area for the entire shape is the sum of the second moment of areas of all of its parts about a common axis. This can include shapes that are "missing" (i.e. holes, hollow shapes, etc.), in which case the second moment of area of the "missing" areas are subtracted, rather than added.

  7. Euler's critical load - Wikipedia

    en.wikipedia.org/wiki/Euler's_critical_load

    Using the free body diagram in the right side of figure 3, and making a summation of moments about point x: = + = where w is the lateral deflection. According to Euler–Bernoulli beam theory , the deflection of a beam is related with its bending moment by: M = − E I d 2 w d x 2 . {\displaystyle M=-EI{\frac {d^{2}w}{dx^{2}}}.}

  8. Specific modulus - Wikipedia

    en.wikipedia.org/wiki/Specific_modulus

    By combining the area and density formulas, we can see that the radius of this beam will vary with approximately the inverse of the square of the density for a given mass. By examining the formulas for area moment of inertia, we can see that the stiffness of this beam will vary approximately as the fourth power of the radius.

  9. Rotation around a fixed axis - Wikipedia

    en.wikipedia.org/wiki/Rotation_around_a_fixed_axis

    The moment of inertia is measured in kilogram metre² (kg m 2). It depends on the object's mass: increasing the mass of an object increases the moment of inertia. It also depends on the distribution of the mass: distributing the mass further from the center of rotation increases the moment of inertia by a greater degree.