Search results
Results from the WOW.Com Content Network
Fractionation at total reflux. The Fenske equation in continuous fractional distillation is an equation used for calculating the minimum number of theoretical plates required for the separation of a binary feed stream by a fractionation column that is being operated at total reflux (i.e., which means that no overhead product distillate is being withdrawn from the column).
The same equation applies in chromatography processes as for the packed bed processes, namely: N t = H H E T P {\displaystyle N_{t}={\frac {H}{\mathrm {HETP} }}} In packed column chromatography, the HETP may also be calculated with the Van Deemter equation .
The Fenske–Hall method is a molecular orbital method in computational chemistry, usually applied to inorganic compounds. This method was developed in Richard F. Fenske's research group at the University of Wisconsin. The method is named after Fenske and Michael B. Hall, who co-authored the last paper [1] in its development. [2]
Phase diagram (left) and process flow diagram (right) of an apparatus for the azeotropic distillation with "material separation agent". In this case the phase diagram includes a zone where components are not miscible, so following the condensation of the azeotrope, it is possible to separate the liquid components through decantation.
Relative volatility is a measure comparing the vapor pressures of the components in a liquid mixture of chemicals. This quantity is widely used in designing large industrial distillation processes.
The McCabe–Thiele method is a technique that is commonly employed in the field of chemical engineering to model the separation of two substances by a distillation column.
Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.
Name Dim Equation Applications Landau–Lifshitz model: 1+n = + Magnetic field in solids Lin–Tsien equation: 1+2 + = Liouville equation: any + = Liouville–Bratu–Gelfand equation