enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. LP-type problem - Wikipedia

    en.wikipedia.org/wiki/LP-type_problem

    Solve the (explicit) LP-type problem defined by g using Clarkson's algorithm, which performs a linear number of violation tests and a polylogarithmic number of basis evaluations. The basis evaluations for g may be performed by recursive calls to Chan's algorithm, and the violation tests may be performed by calls to the decision algorithm.

  3. Linear programming - Wikipedia

    en.wikipedia.org/wiki/Linear_programming

    The simplex algorithm and its variants fall in the family of edge-following algorithms, so named because they solve linear programming problems by moving from vertex to vertex along edges of a polytope. This means that their theoretical performance is limited by the maximum number of edges between any two vertices on the LP polytope.

  4. Penalty method - Wikipedia

    en.wikipedia.org/wiki/Penalty_method

    The advantage of the penalty method is that, once we have a penalized objective with no constraints, we can use any unconstrained optimization method to solve it. The disadvantage is that, as the penalty coefficient p grows, the unconstrained problem becomes ill-conditioned - the coefficients are very large, and this may cause numeric errors ...

  5. Linear programming relaxation - Wikipedia

    en.wikipedia.org/wiki/Linear_programming_relaxation

    Then, for each subproblem i, it performs the following steps. Compute the optimal solution to the linear programming relaxation of the current subproblem. That is, for each variable x j in V i , we replace the constraint that x j be 0 or 1 by the relaxed constraint that it be in the interval [0,1]; however, variables that have already been ...

  6. Assignment problem - Wikipedia

    en.wikipedia.org/wiki/Assignment_problem

    Some of the local methods assume that the graph admits a perfect matching; if this is not the case, then some of these methods might run forever. [1]: 3 A simple technical way to solve this problem is to extend the input graph to a complete bipartite graph, by adding artificial edges with very large weights. These weights should exceed the ...

  7. Dual linear program - Wikipedia

    en.wikipedia.org/wiki/Dual_linear_program

    The duality theorem states that the duality gap between the two LP problems is at least zero. Economically, it means that if the first factory is given an offer to buy its entire stock of raw material, at a per-item price of y, such that A T y ≥ c, y ≥ 0, then it should take the offer. It will make at least as much revenue as it could ...

  8. Big M method - Wikipedia

    en.wikipedia.org/wiki/Big_M_method

    Solve the problem using the usual simplex method. For example, x + y ≤ 100 becomes x + y + s 1 = 100, whilst x + y ≥ 100 becomes x + y − s 1 + a 1 = 100. The artificial variables must be shown to be 0. The function to be maximised is rewritten to include the sum of all the artificial variables.

  9. Karmarkar's algorithm - Wikipedia

    en.wikipedia.org/wiki/Karmarkar's_algorithm

    Karmarkar's algorithm is an algorithm introduced by Narendra Karmarkar in 1984 for solving linear programming problems. It was the first reasonably efficient algorithm that solves these problems in polynomial time. The ellipsoid method is also polynomial time but proved to be inefficient in practice.