Search results
Results from the WOW.Com Content Network
A perfect hash function for the four names shown A minimal perfect hash function for the four names shown. In computer science, a perfect hash function h for a set S is a hash function that maps distinct elements in S to a set of m integers, with no collisions. In mathematical terms, it is an injective function.
The problem may be solved by sorting the list and then checking if there are any consecutive equal elements; it may also be solved in linear expected time by a randomized algorithm that inserts each item into a hash table and compares only those elements that are placed in the same hash table cell. [1]
In computer science, the count-distinct problem [1] (also known in applied mathematics as the cardinality estimation problem) is the problem of finding the number of distinct elements in a data stream with repeated elements. This is a well-known problem with numerous applications.
Linear probing is a component of open addressing schemes for using a hash table to solve the dictionary problem.In the dictionary problem, a data structure should maintain a collection of key–value pairs subject to operations that insert or delete pairs from the collection or that search for the value associated with a given key.
A problem with the Flajolet–Martin algorithm in the above form is that the results vary significantly. A common solution has been to run the algorithm multiple times with k {\displaystyle k} different hash functions and combine the results from the different runs.
The problem with this scheme is that as the number of delete/insert operations increases, the cost of a successful search increases. To improve this, when an element is searched and found in the table, the element is relocated to the first location marked for deletion that was probed during the search.
The hop information bit-map indicates that item c at entry 9 can be moved to entry 11. Finally, a is moved to entry 9. Part (b) shows the table state just before adding x. Hopscotch hashing is a scheme in computer programming for resolving hash collisions of values of hash functions in a table using open addressing.
hash HAS-160: 160 bits hash HAVAL: 128 to 256 bits hash JH: 224 to 512 bits hash LSH [19] 256 to 512 bits wide-pipe Merkle–Damgård construction: MD2: 128 bits hash MD4: 128 bits hash MD5: 128 bits Merkle–Damgård construction: MD6: up to 512 bits Merkle tree NLFSR (it is also a keyed hash function) RadioGatún: arbitrary ideal mangling ...