Search results
Results from the WOW.Com Content Network
End moraine size and shape are determined by whether the glacier is advancing, receding or at equilibrium. The longer the terminus of the glacier stays in one place, the more debris accumulate in the moraine. There are two types of end moraines: terminal and recessional. Terminal moraines mark the maximum advance of the glacier.
A terminal moraine, also called an end moraine, is a type of moraine that forms at the terminal (edge) of a glacier, marking its maximum advance. At this point, debris that has accumulated by plucking and abrasion, has been pushed by the front edge of the ice, is driven no further and instead is deposited in an unsorted pile of sediment.
PPhysiography of the Valparaiso Moraine. Valparaiso Moraine at Mink Lake, north of Valparaiso, Indiana. The Valparaiso Moraine is a recessional moraine (a landform left by receding glaciers) that forms an immense U around the southern Lake Michigan basin in North America. It is a band of hilly terrain composed of glacial till and sand.
One theory proposes that as the glacier melts it leaves behind an accumulation of rock debris in the form of annual recessional moraines. These annual glacial advances and recessions cause parallel ridges to form a few metres apart. Because the accumulation of debris is annual, the moraines do not get very large and stand only a few metres high.
This is an accepted version of this page This is the latest accepted revision, reviewed on 11 December 2024. List of organ systems in the human body Part of a series of lists about Human anatomy General Features Regions Variations Movements Systems Structures Arteries Bones Eponymous Foramina Glands endocrine exocrine Lymphatic vessels Nerves Organs Systems Veins Muscles Abductors Adductors ...
In this stage there is a cytoplasmic division that occurs at the end of either mitosis or meiosis. At this stage there is a resulting irreversible separation leading to two daughter cells. Cell division plays an important role in determining the fate of the cell. This is due to there being the possibility of an asymmetric division.
The end replication problem is handled in eukaryotic cells by telomere regions and telomerase. Telomeres extend the 3' end of the parental chromosome beyond the 5' end of the daughter strand. This single-stranded DNA structure can act as an origin of replication that recruits telomerase.
The cytoskeleton is a highly dynamic part of a cell and cytoskeletal filaments constantly grow and shrink through addition and removal of subunits. Directed crawling motion of cells such as macrophages relies on directed growth of actin filaments at the cell front (leading edge).