Search results
Results from the WOW.Com Content Network
Medical ultrasound includes diagnostic techniques (mainly imaging techniques) using ultrasound, as well as therapeutic applications of ultrasound. In diagnosis, it is used to create an image of internal body structures such as tendons, muscles, joints, blood vessels, and internal organs, to measure some characteristics (e.g., distances and velocities) or to generate an informative audible sound.
By changing the pulse delays, the computer can scan the beam of ultrasound in a raster pattern across the tissue. Echoes reflected by different density tissue, received by the transducers, build up an image of the underlying structures. Weld examination by phased array. TOP: The phased array probe emits a series of beams to flood the weld with ...
Super-resolution imaging (SR) is a class of techniques that enhance (increase) the resolution of an imaging system. In optical SR the diffraction limit of systems is transcended, while in geometrical SR the resolution of digital imaging sensors is enhanced.
One area of research in which attenuation plays a prominent role, is in ultrasound physics. Attenuation in ultrasound is the reduction in amplitude of the ultrasound beam as a function of distance through the imaging medium. Accounting for attenuation effects in ultrasound is important because a reduced signal amplitude can affect the quality ...
Ultrasound Localization Microscopy (ULM) is an advanced ultrasound imaging technique. By localizing microbubbles, ULM overcomes the physical limit of diffraction, achieving sub-wavelength level resolution and qualifying as a super-resolution technique. [1] [2] ULM is primarily utilized in vascular imaging.
Medical imaging is the technique and process of imaging the interior of a body for clinical analysis and medical intervention, as well as visual representation of the function of some organs or tissues . Medical imaging seeks to reveal internal structures hidden by the skin and bones, as well as to diagnose and treat disease.
Synthetic aperture ultrasound (SAU) imaging is an advanced form of imaging technology used to form high-resolution images in biomedical ultrasound systems. Ultrasound imaging has become an important and popular medical imaging method, as it is safer and more economical than computer tomography (CT) and magnetic resonance imaging (MRI).
Focused-ultrasound-mediated diagnostics or FUS-mediated diagnostics are an area of clinical diagnostic tools that use ultrasound to detect diseases and cancers. Although ultrasound has been used for imaging in various settings, focused-ultrasound refers to the detection of specific cells and biomarkers under flow combining ultrasound with lasers, microbubbles, and imaging techniques.