Search results
Results from the WOW.Com Content Network
Relevance feedback is a feature of some information retrieval systems. The idea behind relevance feedback is to take the results that are initially returned from a given query, to gather user feedback, and to use information about whether or not those results are relevant to perform a new query. We can usefully distinguish between three types ...
The Rocchio algorithm is based on a method of relevance feedback found in information retrieval systems which stemmed from the SMART Information Retrieval System developed between 1960 and 1964. Like many other retrieval systems, the Rocchio algorithm was developed using the vector space model .
Machine learning based query term weight and synonym analyzer for query expansion. LucQE - open-source, Java. Provides a framework along with several implementations that allow to perform query expansion with the use of Apache Lucene. Xapian is an open-source search library which includes support for query expansion; ReQue open-source, Python ...
The most important factor in determining a system's effectiveness for users is the overall relevance of results retrieved in response to a query. [1] The success of an IR system may be judged by a range of criteria including relevance, speed, user satisfaction, usability, efficiency and reliability. [2]
The information need can be specified in the form of a search query. In the case of document retrieval, queries can be based on full-text or other content-based indexing. Information retrieval is the science [ 1 ] of searching for information in a document, searching for documents themselves, and also searching for the metadata that describes ...
Further, research has shown effectiveness improves relative to that for Boolean query processing. Other research has shown that relevance feedback and query expansion can be integrated with extended Boolean query processing.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
A measure called "maximal marginal relevance" (MMR) has been proposed to manage this shortcoming. It considers the relevance of each document only in terms of how much new information it brings given the previous results. [13] In some cases, a query may have an ambiguous interpretation, or a variety of potential responses.