Search results
Results from the WOW.Com Content Network
Nonparametric regression is a category of regression analysis in which the predictor does not take a predetermined form but is constructed according to information derived from the data. That is, no parametric equation is assumed for the relationship between predictors and dependent variable.
Nonparametric statistics is a type of statistical analysis that makes minimal assumptions about the underlying distribution of the data being studied. Often these models are infinite-dimensional, rather than finite dimensional, as is parametric statistics. [1] Nonparametric statistics can be used for descriptive statistics or statistical ...
In statistics, econometrics, political science, epidemiology, and related disciplines, a regression discontinuity design (RDD) is a quasi-experimental pretest–posttest design that aims to determine the causal effects of interventions by assigning a cutoff or threshold above or below which an intervention is assigned.
Parametric tests assume that the data follow a particular distribution, typically a normal distribution, while non-parametric tests make no assumptions about the distribution. [7] Non-parametric tests have the advantage of being more resistant to misbehaviour of the data, such as outliers . [ 7 ]
In statistics, multivariate adaptive regression splines (MARS) is a form of regression analysis introduced by Jerome H. Friedman in 1991. [1] It is a non-parametric regression technique and can be seen as an extension of linear models that automatically models nonlinearities and interactions between variables.
Nonparametric statistics is a branch of statistics concerned with non-parametric statistical models and non-parametric statistical tests. Non-parametric statistics are statistics that do not estimate population parameters. In contrast, see parametric statistics. Nonparametric models differ from parametric models in that the model structure is ...
The search engine that helps you find exactly what you're looking for. Find the most relevant information, video, images, and answers from all across the Web.
Not all statistical packages support post-hoc analysis for Friedman's test, but user-contributed code exists that provides these facilities (for example in SPSS, [10] and in R. [11]). Also, there is a specialized package available in R containing numerous non-parametric methods for post-hoc analysis after Friedman. [12]