Search results
Results from the WOW.Com Content Network
Recurrent event analysis is a branch of survival analysis that analyzes the time until recurrences occur, such as recurrences of traits or diseases. Recurrent events are often analyzed in social sciences and medical studies, for example recurring infections, depressions or cancer recurrences.
In mathematics (including combinatorics, linear algebra, and dynamical systems), a linear recurrence with constant coefficients [1]: ch. 17 [2]: ch. 10 (also known as a linear recurrence relation or linear difference equation) sets equal to 0 a polynomial that is linear in the various iterates of a variable—that is, in the values of the elements of a sequence.
The main advantage of the recurrence quantification analysis is that it can provide useful information even for short and non-stationary data, where other methods fail. RQA can be applied to almost every kind of data. It is widely used in physiology, but was also successfully applied on problems from engineering, chemistry, Earth sciences etc.
In mathematics, a recurrence relation is an equation according to which the th term of a sequence of numbers is equal to some combination of the previous terms. Often, only previous terms of the sequence appear in the equation, for a parameter that is independent of ; this number is called the order of the relation.
The approach was first presented by Jon Bentley, Dorothea Blostein (née Haken), and James B. Saxe in 1980, where it was described as a "unifying method" for solving such recurrences. [1] The name "master theorem" was popularized by the widely used algorithms textbook Introduction to Algorithms by Cormen, Leiserson, Rivest, and Stein.
The Akra–Bazzi method is more useful than most other techniques for determining asymptotic behavior because it covers such a wide variety of cases. Its primary application is the approximation of the running time of many divide-and-conquer algorithms.
The theory of statistics provides a basis for the whole range of techniques, in both study design and data analysis, that are used within applications of statistics. [1] [2] The theory covers approaches to statistical-decision problems and to statistical inference, and the actions and deductions that satisfy the basic principles stated for these different approaches.
Replication in statistics evaluates the consistency of experiment results across different trials to ensure external validity, while repetition measures precision and internal consistency within the same or similar experiments. [5] Replicates Example: Testing a new drug's effect on blood pressure in separate groups on different days.