enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gallium arsenide - Wikipedia

    en.wikipedia.org/wiki/Gallium_arsenide

    Gallium arsenide (GaAs) is a III-V direct band gap semiconductor with a zinc blende crystal structure.. Gallium arsenide is used in the manufacture of devices such as microwave frequency integrated circuits, monolithic microwave integrated circuits, infrared light-emitting diodes, laser diodes, solar cells and optical windows.

  3. Semiconductor device - Wikipedia

    en.wikipedia.org/wiki/Semiconductor_device

    Gallium arsenide (GaAs) is also widely used in high-speed devices but so far, it has been difficult to form large-diameter boules of this material, limiting the wafer diameter to sizes significantly smaller than silicon wafers thus making mass production of GaAs devices significantly more expensive than silicon. Gallium Nitride (GaN) is gaining ...

  4. List of semiconductor materials - Wikipedia

    en.wikipedia.org/wiki/List_of_semiconductor...

    For example, gallium arsenide (GaAs) has six times higher electron mobility than silicon, which allows faster operation; wider band gap, which allows operation of power devices at higher temperatures, and gives lower thermal noise to low power devices at room temperature; its direct band gap gives it more favorable optoelectronic properties ...

  5. Charge carrier density - Wikipedia

    en.wikipedia.org/wiki/Charge_carrier_density

    For example, doping pure silicon with a small amount of phosphorus will increase the carrier density of electrons, n. Then, since n > p, the doped silicon will be a n-type extrinsic semiconductor. Doping pure silicon with a small amount of boron will increase the carrier density of holes, so then p > n, and it will be a p-type extrinsic ...

  6. Wide-bandgap semiconductor - Wikipedia

    en.wikipedia.org/wiki/Wide-bandgap_semiconductor

    Wide-bandgap semiconductors permit devices to operate at much higher voltages, frequencies, and temperatures than conventional semiconductor materials like silicon and gallium arsenide. They are the key component used to make short-wavelength (green-UV) LEDs or lasers , and are also used in certain radio frequency applications, notably military ...

  7. Band gap - Wikipedia

    en.wikipedia.org/wiki/Band_gap

    In almost all inorganic semiconductors, such as silicon, gallium arsenide, etc., there is very little interaction between electrons and holes (very small exciton binding energy), and therefore the optical and electronic bandgap are essentially identical, and the distinction between them is ignored.

  8. High-electron-mobility transistor - Wikipedia

    en.wikipedia.org/wiki/High-electron-mobility...

    The invention of the high-electron-mobility transistor (HEMT) is usually attributed to physicist Takashi Mimura (三村 高志), while working at Fujitsu in Japan. [4] The basis for the HEMT was the GaAs (gallium arsenide) MOSFET (metal–oxide–semiconductor field-effect transistor), which Mimura had been researching as an alternative to the standard silicon (Si) MOSFET since 1977.

  9. Electron mobility - Wikipedia

    en.wikipedia.org/wiki/Electron_mobility

    Carrier mobility in semiconductors is doping dependent. In silicon (Si) the electron mobility is of the order of 1,000, in germanium around 4,000, and in gallium arsenide up to 10,000 cm 2 /(V⋅s). Hole mobilities are generally lower and range from around 100 cm 2 /(V⋅s) in gallium arsenide, to 450 in silicon, and 2,000 in germanium. [1]