enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Weight-balanced tree - Wikipedia

    en.wikipedia.org/wiki/Weight-balanced_tree

    Join: The function Join is on two weight-balanced trees t 1 and t 2 and a key k and will return a tree containing all elements in t 1, t 2 as well as k. It requires k to be greater than all keys in t 1 and smaller than all keys in t 2. If the two trees have the balanced weight, Join simply create a new node with left subtree t 1, root k and ...

  3. Day–Stout–Warren algorithm - Wikipedia

    en.wikipedia.org/wiki/Day–Stout–Warren_algorithm

    [1] [note 1] It consists of a main routine with three subroutines. The main routine is given by Allocate a node, the "pseudo-root", and make the tree's actual root the right child of the pseudo-root. Call tree-to-vine with the pseudo-root as its argument. Call vine-to-tree on the pseudo-root and the size (number of elements) of the tree.

  4. B-tree - Wikipedia

    en.wikipedia.org/wiki/B-tree

    A B-tree of depth n+1 can hold about U times as many items as a B-tree of depth n, but the cost of search, insert, and delete operations grows with the depth of the tree. As with any balanced tree, the cost grows much more slowly than the number of elements. Some balanced trees store values only at leaf nodes, and use different kinds of nodes ...

  5. Join-based tree algorithms - Wikipedia

    en.wikipedia.org/wiki/Join-based_tree_algorithms

    If the two trees are balanced, join simply creates a new node with left subtree t 1, root k and right subtree t 2. Suppose that t 1 is heavier (this "heavier" depends on the balancing scheme) than t 2 (the other case is symmetric). Join follows the right spine of t 1 until a node c which is balanced with t 2.

  6. Self-balancing binary search tree - Wikipedia

    en.wikipedia.org/wiki/Self-balancing_binary...

    Most operations on a binary search tree (BST) take time directly proportional to the height of the tree, so it is desirable to keep the height small. A binary tree with height h can contain at most 2 0 +2 1 +···+2 h = 2 h+11 nodes. It follows that for any tree with n nodes and height h: + And that implies:

  7. Y-fast trie - Wikipedia

    en.wikipedia.org/wiki/Y-fast_trie

    An example of a y-fast trie. The nodes shown in the x-fast trie are the representatives of the O(n / log M) balanced binary search trees.. A y-fast trie consists of two data structures: the top half is an x-fast trie and the lower half consists of a number of balanced binary trees.

  8. WAVL tree - Wikipedia

    en.wikipedia.org/wiki/WAVL_tree

    WAVL trees are named after AVL trees, another type of balanced search tree, and are closely related both to AVL trees and red–black trees, which all fall into a common framework of rank balanced trees. Like other balanced binary search trees, WAVL trees can handle insertion, deletion, and search operations in time O(log n) per operation. [1] [2]

  9. AVL tree - Wikipedia

    en.wikipedia.org/wiki/AVL_tree

    Fig. 1: AVL tree with balance factors (green) In computer science, an AVL tree (named after inventors Adelson-Velsky and Landis) is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property.