Search results
Results from the WOW.Com Content Network
Newton's second law is sometimes presented as a definition of force, i.e., a force is that which exists when an inertial observer sees a body accelerating. In order for this to be more than a tautology — acceleration implies force, force implies acceleration — some other statement about force must also be made.
The inertial force must act through the center of mass and the inertial torque can act anywhere. The system can then be analyzed exactly as a static system subjected to this "inertial force and moment" and the external forces. The advantage is that in the equivalent static system one can take moments about any point (not just the center of mass).
In physics, the line of action (also called line of application) of a force (F →) is a geometric representation of how the force is applied. It is the straight line through the point at which the force is applied, and is in the same direction as the vector F →. [1] [2]
In such a situation, a force is applied in the direction of motion while the kinetic friction force exactly opposes the applied force. This results in zero net force, but since the object started with a non-zero velocity, it continues to move with a non-zero velocity. Aristotle misinterpreted this motion as being caused by the applied force.
In physics and engineering, a free body diagram (FBD; also called a force diagram) [1] is a graphical illustration used to visualize the applied forces, moments, and resulting reactions on a free body in a given condition. It depicts a body or connected bodies with all the applied forces and moments, and reactions, which act on the body(ies).
Newton’s second law of motion states that the rate of change of momentum of an object is equal to the resultant force F acting on the object: =, so the impulse J delivered by a steady force F acting for time Δ t is: J = F Δ t . {\displaystyle \mathbf {J} =\mathbf {F} \Delta t.}
Applied mechanics is the branch of science concerned with the motion of any substance that can be experienced or perceived by humans without the help of instruments. [1] In short, when mechanics concepts surpass being theoretical and are applied and executed, general mechanics becomes applied mechanics.
In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.