Search results
Results from the WOW.Com Content Network
The refractive index is about 2.67 at 550 nm (green), and about 2.40 at 10.6 μm . Similar to zinc sulfide, ZnSe is produced as microcrystalline sheets by synthesis from hydrogen selenide gas and zinc vapour. Another method of producing is a growth from melt under excessive pressure of inert gas (Ar usually). [5]
Typical materials for ATR crystals include germanium, KRS-5 and zinc selenide, while silicon is ideal for use in the Far-IR region of the electromagnetic spectrum. The excellent mechanical properties of diamond make it an ideal material for ATR, particularly when studying very hard solids, although the broad diamond phonon band between 2600 and ...
Refraction at interface. Many materials have a well-characterized refractive index, but these indices often depend strongly upon the frequency of light, causing optical dispersion. Standard refractive index measurements are taken at the "yellow doublet" sodium D line, with a wavelength (λ) of 589 nanometers.
Refractive index: About 2.5: References [2] [3] Stilleite is a selenide mineral, zinc selenide, with the formula Zn Se.
The refractive index of materials varies with the wavelength (and frequency) of light. [27] This is called dispersion and causes prisms and rainbows to divide white light into its constituent spectral colors. [28] As the refractive index varies with wavelength, so will the refraction angle as light goes from one material to another.
In optics, Cauchy's transmission equation is an empirical relationship between the refractive index and wavelength of light for a particular transparent material. It is named for the mathematician Augustin-Louis Cauchy, who originally defined it in 1830 in his article "The refraction and reflection of light". [1]
The plot of volume or density versus molecular fraction of ethanol in water is a quadratic curve. However, the plot of index of refraction versus molecular fraction of ethanol in water is linear, and the weight fraction equals the fractional density [4] In the 1900s, the Gladstone–Dale relation was applied to glass, synthetic crystals and ...
A. R. Forouhi and I. Bloomer deduced dispersion equations for the refractive index, n, and extinction coefficient, k, which were published in 1986 [1] and 1988. [2] The 1986 publication relates to amorphous materials, while the 1988 publication relates to crystalline.