Search results
Results from the WOW.Com Content Network
A special class of cellular automata are totalistic cellular automata. The state of each cell in a totalistic cellular automaton is represented by a number (usually an integer value drawn from a finite set), and the value of a cell at time t depends only on the sum of the values of the cells in its neighborhood (possibly including the cell ...
Rule 30 is an elementary cellular automaton introduced by Stephen Wolfram in 1983. [2] Using Wolfram's classification scheme , Rule 30 is a Class III rule, displaying aperiodic, chaotic behaviour. This rule is of particular interest because it produces complex, seemingly random patterns from simple, well-defined rules.
The Rule 110 cellular automaton (often called simply Rule 110) [a] is an elementary cellular automaton with interesting behavior on the boundary between stability and chaos. In this respect, it is similar to Conway's Game of Life .
A cellular automaton is defined by its cells (often a one- or two-dimensional array), a finite set of values or states that can go into each cell, a neighborhood associating each cell with a finite set of nearby cells, and an update rule according to which the values of all cells are updated, simultaneously, as a function of the values of their neighboring cells.
A state of the Rule 184 automaton consists of a one-dimensional array of cells, each containing a binary value (0 or 1). In each step of its evolution, the Rule 184 automaton applies the following rule to each of the cells in the array, simultaneously for all cells, to determine the new state of the cell: [3]
The rule for the automaton within each of these subsets is equivalent (except for a shift by half a cell per time step) to another elementary cellular automaton, Rule 102, in which the new state of each cell is the exclusive or of its old state and its right neighbor. That is, the behavior of Rule 90 is essentially the same as the behavior of ...
In mathematics and computability theory, an elementary cellular automaton is a one-dimensional cellular automaton where there are two possible states (labeled 0 and 1) and the rule to determine the state of a cell in the next generation depends only on the current state of the cell and its two immediate neighbors.
A block cellular automaton or partitioning cellular automaton is a special kind of cellular automaton in which the lattice of cells is divided into non-overlapping blocks (with different partitions at different time steps) and the transition rule is applied to a whole block at a time rather than a single cell. Block cellular automata are useful ...