Search results
Results from the WOW.Com Content Network
In mathematics, a quadratic equation (from Latin quadratus 'square') is an equation that can be rearranged in standard form as [1] + + =, where the variable x represents an unknown number, and a, b, and c represent known numbers, where a ≠ 0. (If a = 0 and b ≠ 0 then the equation is linear, not quadratic.)
Newton's inequalities; Symmetric function; Fluid solutions, an article giving an application of Newton's identities to computing the characteristic polynomial of the Einstein tensor in the case of a perfect fluid, and similar articles on other types of exact solutions in general relativity.
This can be seen in the following tables, the left of which shows Newton's method applied to the above f(x) = x + x 4/3 and the right of which shows Newton's method applied to f(x) = x + x 2. The quadratic convergence in iteration shown on the right is illustrated by the orders of magnitude in the distance from the iterate to the true root (0,1 ...
Given such a configuration the point P is located on the Newton line, that is line EF connecting the midpoints of the diagonals. [1] A tangential quadrilateral with two pairs of parallel sides is a rhombus. In this case, both midpoints and the center of the incircle coincide, and by definition, no Newton line exists.
Newton's method uses curvature information (i.e. the second derivative) to take a more direct route. In calculus, Newton's method (also called Newton–Raphson) is an iterative method for finding the roots of a differentiable function, which are solutions to the equation =.
The original use of interpolation polynomials was to approximate values of important transcendental functions such as natural logarithm and trigonometric functions.Starting with a few accurately computed data points, the corresponding interpolation polynomial will approximate the function at an arbitrary nearby point.
The quadratic formula is exactly correct when performed using the idealized arithmetic of real numbers, but when approximate arithmetic is used instead, for example pen-and-paper arithmetic carried out to a fixed number of decimal places or the floating-point binary arithmetic available on computers, the limitations of the number representation ...
Newton's theorem may refer to: Newton's theorem (quadrilateral) Newton's theorem about ovals; Newton's theorem of revolving orbits; Newton's shell theorem