Search results
Results from the WOW.Com Content Network
For example, the case b = 10, p = 7 gives the cyclic number 142857, and the case b = 12, p = 5 gives the cyclic number 2497. Not all values of p will yield a cyclic number using this formula; for example, the case b = 10, p = 13 gives 076923076923, and the case b = 12, p = 19 gives 076B45076B45076B45. These failed cases will always contain a ...
A cyclic number [1] [2] is a natural number n such that n and φ(n) are coprime. Here φ is Euler's totient function. An equivalent definition is that a number n is cyclic if and only if any group of order n is cyclic. [3] Any prime number is clearly cyclic. All cyclic numbers are square-free. [4] Let n = p 1 p 2 …
A number n is called a cyclic number if Z/nZ is the only group of order n, which is true exactly when gcd(n, φ(n)) = 1. [13] The sequence of cyclic numbers include all primes, but some are composite such as 15. However, all cyclic numbers are odd except 2. The cyclic numbers are:
Cyclic number, a number such that cyclic permutations of the digits are successive multiples of the number; Cyclic order, a ternary relation defining a way to arrange a set of objects in a circle; Cyclic permutation, a permutation with one nontrivial orbit; Cyclic polygon, a polygon which can be given a circumscribed circle
A cyclic permutation consisting of a single 8-cycle. There is not widespread consensus about the precise definition of a cyclic permutation. Some authors define a permutation σ of a set X to be cyclic if "successive application would take each object of the permuted set successively through the positions of all the other objects", [1] or, equivalently, if its representation in cycle notation ...
Multiplying each remainder by the quotient gives a cyclic number. The sum of the quotient:72 The sum of the remainders:136 136/17=8-----72/9=8 0588235294117647*136=79999999999999992 1/17*136=8. Only works when the quotient has a length of an even number. Interesting question to know why numbers share between themselves and how they share. When ...
A cyclic group Z n is a group all of whose elements are powers of a particular element a where a n = a 0 = e, the identity. A typical realization of this group is as the complex n th roots of unity. Sending a to a primitive root of unity gives an isomorphism between the two. This can be done with any finite cyclic group.
The period of the sequence, or order of the set of sociable numbers, is the number of numbers in this cycle. If the period of the sequence is 1, the number is a sociable number of order 1, or a perfect number—for example, the proper divisors of 6 are 1, 2, and 3, whose sum is again 6. A pair of amicable numbers is a set of sociable numbers of ...