enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hypergraph - Wikipedia

    en.wikipedia.org/wiki/Hypergraph

    A connected graph G with the same vertex set as a connected hypergraph H is a host graph for H if every hyperedge of H induces a connected subgraph in G. For a disconnected hypergraph H, G is a host graph if there is a bijection between the connected components of G and of H, such that each connected component G' of G is a host of the ...

  3. Vertex (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Vertex_(graph_theory)

    A graph with 6 vertices and 7 edges where the vertex number 6 on the far-left is a leaf vertex or a pendant vertex. In discrete mathematics, and more specifically in graph theory, a vertex (plural vertices) or node is the fundamental unit of which graphs are formed: an undirected graph consists of a set of vertices and a set of edges (unordered pairs of vertices), while a directed graph ...

  4. Threshold graph - Wikipedia

    en.wikipedia.org/wiki/Threshold_graph

    An example of a threshold graph. In graph theory, a threshold graph is a graph that can be constructed from a one-vertex graph by repeated applications of the following two operations: Addition of a single isolated vertex to the graph. Addition of a single dominating vertex to the graph, i.e. a single vertex that is connected to all other vertices.

  5. Berge's theorem - Wikipedia

    en.wikipedia.org/wiki/Berge's_theorem

    Take a graph G and let M and M ′ be two matchings in G. Let G ′ be the resultant graph from taking the symmetric difference of M and M ′; i.e. (M - M ′) ∪ (M ′ - M). G ′ will consist of connected components that are one of the following: An isolated vertex. An even cycle whose edges alternate between M and M ′.

  6. Component (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Component_(graph_theory)

    Every graph is the disjoint union of its components. [2] Additional examples include the following special cases: In an empty graph, each vertex forms a component with one vertex and zero edges. [3] More generally, a component of this type is formed for every isolated vertex in any graph. [4]

  7. Graph theory - Wikipedia

    en.wikipedia.org/wiki/Graph_theory

    Likewise, graph theory is useful in biology and conservation efforts where a vertex can represent regions where certain species exist (or inhabit) and the edges represent migration paths or movement between the regions. This information is important when looking at breeding patterns or tracking the spread of disease, parasites or how changes to ...

  8. Degree (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Degree_(graph_theory)

    A vertex with degree 1 is called a leaf vertex or end vertex or a pendant vertex, and the edge incident with that vertex is called a pendant edge. In the graph on the right, {3,5} is a pendant edge. This terminology is common in the study of trees in graph theory and especially trees as data structures.

  9. Two-graph - Wikipedia

    en.wikipedia.org/wiki/Two-graph

    In a given switching class of graphs of a regular two-graph, let Γ x be the unique graph having x as an isolated vertex (this always exists, just take any graph in the class and switch the open neighborhood of x) without the vertex x. That is, the two-graph is the extension of Γ x by x. In the first example above of a regular two-graph, Γ x ...