Search results
Results from the WOW.Com Content Network
The water cycle is essential to life on Earth and plays a large role in the global climate system and ocean circulation. The warming of our planet is expected to be accompanied by changes in the water cycle for various reasons. [24] For example, a warmer atmosphere can contain more water vapor which has effects on evaporation and rainfall.
Heat of vaporization of water from melting to critical temperature. Water has a very high specific heat capacity of 4184 J/(kg·K) at 20 °C (4182 J/(kg·K) at 25 °C) —the second-highest among all the heteroatomic species (after ammonia), as well as a high heat of vaporization (40.65 kJ/mol or 2257 kJ/kg at the normal boiling point), both of ...
For instance, buoyancy's diminishing effect upon one's body weight (a relatively low-density object) is 1 ⁄ 860 that of gravity (for pure water it is about 1 ⁄ 770 that of gravity). Furthermore, variations in barometric pressure rarely affect a person's weight more than ±1 part in 30,000. [ 6 ]
The driving force in stratification is gravity, which sorts adjacent arbitrary volumes of water by local density, operating on them by buoyancy and weight.A volume of water of lower density than the surroundings will have a resultant buoyant force lifting it upwards, and a volume with higher density will be pulled down by the weight which will be greater than the resultant buoyant forces ...
A number of materials contract on heating within certain temperature ranges; this is usually called negative thermal expansion, rather than "thermal contraction".For example, the coefficient of thermal expansion of water drops to zero as it is cooled to 3.983 °C (39.169 °F) and then becomes negative below this temperature; this means that water has a maximum density at this temperature, and ...
Pure water is visibly blue due to absorption of light in the region c. 600–800 nm. [89] The color can be easily observed in a glass of tap-water placed against a pure white background, in daylight. The principal absorption bands responsible for the color are overtones of the O–H stretching vibrations.
As the temperature difference between the top and bottom of the fluid becomes higher, significant differences in fluid parameters other than density may develop in the fluid due to temperature. An example of such a parameter is viscosity, which may begin to significantly vary horizontally across layers of fluid. This breaks the symmetry of the ...
Isotope fractionation occurs during a phase transition, the ratio of light to heavy isotopes in the involved molecules changes. When water vapor condenses (an equilibrium fractionation), the heavier water isotopes (18 O and 2 H) become enriched in the liquid phase while the lighter isotopes (16 O and 1 H) tend toward the vapor phase. [4]