Search results
Results from the WOW.Com Content Network
In mathematics, the Taylor series or Taylor expansion of a function is an infinite sum of terms that are expressed in terms of the function's derivatives at a single point. For most common functions, the function and the sum of its Taylor series are equal near this point.
In particular, the Taylor expansion holds in the form = + (), = = ()! (), where the remainder term R k is complex analytic. Methods of complex analysis provide some powerful results regarding Taylor expansions.
The linear approximation of a function is the first order Taylor expansion around the point of interest. In the study of dynamical systems, linearization is a method for assessing the local stability of an equilibrium point of a system of nonlinear differential equations or discrete dynamical systems. [1]
If the analytic function f has the Taylor expansion = + + + then a matrix function () can be defined by substituting x by a square matrix: powers become matrix powers, additions become matrix sums and multiplications by coefficients become scalar multiplications.
In probability theory, it is possible to approximate the moments of a function f of a random variable X using Taylor expansions, provided that f is sufficiently differentiable and that the moments of X are finite. A simulation-based alternative to this approximation is the application of Monte Carlo simulations.
We derive Itô's lemma by expanding a Taylor series and applying the rules of stochastic calculus. Suppose is an Itô drift-diffusion process that satisfies the stochastic differential equation = +, where B t is a Wiener process.
Get answers to your AOL Mail, login, Desktop Gold, AOL app, password and subscription questions. Find the support options to contact customer care by email, chat, or phone number.
A Laurent series is a generalization of the Taylor series, allowing terms with negative exponents; it takes the form = and converges in an annulus. [6] In particular, a Laurent series can be used to examine the behavior of a complex function near a singularity by considering the series expansion on an annulus centered at the singularity.